
Università degli Studi di Camerino

Scuola di Scienze e Tecnologie

Laurea Magistrale in Computer Science LM-18

Double Degree with

Universidad Nacional de Catamarca (UNCa)

Analysis and De�nitions of E�ective
Metrics for Scrum Teams

Candidate: Supervisor (UNICAM):
Federico Ramayo Prof. Andrea Polini

Supervisor (UNCa):
Prof. Juan Pablo Moreno

Academic Year 2016/2017

Analysis and De�nitions of E�ective Metrics
for Scrum Teams

Federico Ramayo

July 2017

Abstract

Nowadays, organizations that are not ready to adapt to changes that are hap-
pening every day, are most likely to lose any competitive advantage they have
achieved, leaving them lagging behind those who did. In software industry,
this can be seen in companies that deliver software once every several months,
or do not have a good communication with their customers and do not deliver
the functionalities they need/want. In order to counter these problems Agile
methodologies were born. Although these methodologies make promises re-
garding teams' productivity, this aspect does not depend only on the use of
a framework but also the practices, processes, and the culture within a team
and an organization.

The current thesis sets the necessary concepts to establish useful met-
rics that any software development team practicing Scrum should take into
account. To achieve this, in �rst place Agile, along with its principles and
values, have been de�ned and explained, as well as the concepts that rule
Agile's most used framework, Scrum. In second place, di�erent metrics that
are useful for Scrum teams were classi�ed and explained. To support the
selection of really helpful metrics a survey was carried out. The results
obtained, along with an analysis of the available tools for software project
management, settled the basis for the establishment of a working environ-
ment, which consists of open source applications. These tools cover almost
all the spectrum in a software project management, from the speci�cation of
features to develop, till the deployment of the product, passing through of
the coding tasks that developers have to perform along with documentation,
testing, among others, as well as the analysis of di�erent aspects involved in
the team's performance.

To my parents,
for giving me wings.

Acknowledgments

First of all, I would like to thank my supervisors Professor Andrea Polini and
Professor Juan Pablo Moreno for providing me their support and the guidance
over these months. Without them, this thesis would not be possible.

Thank you to the National University of Catamarca not only for giving me
this opportunity but also for giving me the tools to develop as a professional
anywhere in the world. I am also grateful to the University of Camerino for
teaching me that "Il futuro non crolla", and no matter how great a setback
may be, with e�ort and work you can get ahead.

Special thanks to two excellent people that Camerino and the destiny
made me meet, PhD Cesar Nieto Coria for being there, giving his help since
I put my �rst step in Castelraimondo, and PhD Garima Tiwari for her in�nite
help.

Last but not the least, I want to thank my parents for giving me all the
support to ful�ll this dream, even in the most di�cult moments.

v

Contents

Index vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Measurement and Metrics . 1

1.1.1 Measurement of Scrum 3
1.2 Research Problem . 4
1.3 Objectives . 4
1.4 Outline . 5

2 Agile Teams and Scrum 7
2.1 Agile Concepts . 8

2.1.1 Values and Principles 8
2.1.2 Methodologies . 11

2.2 Scrum concepts . 11
2.2.1 Scrum Teams . 12
2.2.2 Scrum Events . 12
2.2.3 Scrum Artifacts . 14

2.3 Conclusion: Agile teams practicing Scrum 16

3 Metrics for Scrum Teams 17
3.1 When is a metric useful? . 18
3.2 Classifying Metrics . 20

3.2.1 What type of variable do they measure? 20
3.2.2 What information do they provide? 21

vii

Contents

3.2.3 Do they look at the present or the past? 21

3.2.4 What are they used for? 22

3.3 Scrum Metrics . 22

3.3.1 Burn-down . 23

3.3.2 Velocity . 24

3.3.3 Productivity . 25

3.3.4 Lead Time and Cycle Time 25

3.3.5 Value . 26

3.3.6 Quality . 26

3.3.7 Metrics for Hyper-productive Teams 29

3.3.8 Actionable Metrics . 32

3.3.9 Metrics for Understanding Flow 33

3.4 Conclusion: Things to avoid 34

4 Metrics Selection 35

4.1 Supporting metrics selection 35

4.2 Survey . 38

4.2.1 Questions . 38

4.2.2 Making it public . 40

4.2.3 Results . 41

4.3 Conclusion: Selected metrics 45

5 Implementation 47

5.1 Analysis of Tools . 47

5.1.1 Application Life-cycle Management Tools 47

5.1.2 Measurement Tools . 50

5.2 Tuleap . 54

5.3 Solution . 57

5.3.1 Architecture . 57

5.3.2 Interaction with the Tuleap REST API 59

5.3.3 Result . 62

5.4 Conclusion: Working Environment 66

6 Conclusions 67

6.1 Contribution . 67

6.2 Future Work . 69

viii

Contents

A Survey Model and Answers 71
A.1 Survey Model . 71
A.2 Survey Answers . 74

A.2.1 Answers to Q1 . 74
A.2.2 Answers to Q2 . 76
A.2.3 Answers to Q3 . 80
A.2.4 Answers to Q4 . 84

Bibliography 87

ix

Contents

x

List of Figures

2.1 Scrum overview . 16

3.1 Burn-down chart . 23
3.2 Sucess at Scale . 32

4.1 Measurement of success with AgileInitiatives 36
4.2 Measurement of success with Agile Projects 37
4.3 Question 1 results . 41
4.4 Question 2 results . 42
4.5 Question 3 results . 42

5.1 ActionableAgile Analytitcs Tool Chart 51
5.2 AgilityHealth Radar . 52
5.3 ScrumLint screenshot . 53
5.4 SonarQube dashboard . 54
5.5 Tuleap dashboard . 55
5.6 Tuleap trackers . 55
5.7 Mylyn tasks from Tuleap . 56
5.8 Tuleap API Explorer . 61
5.9 meTricks Login . 62
5.10 meTricks Project selection . 63
5.11 meTricks Example 1 . 64
5.12 meTricks Example 2 . 64
5.13 meTricks Example 3 . 65
5.14 meTricks Example 4 . 65
5.15 Architecture of Working Environment 66

xi

List of Figures

xii

List of Tables

2.1 Scrum events summary . 14

4.1 Survey Q2 & Q3 percentages 43
4.2 Survey Q4 answers . 44

5.1 Project management tools . 48

A.1 Answers Q1 . 76
A.2 Answers Q2 . 80
A.3 Answers Q3 . 84

xiii

List of Tables

xiv

Chapter 1

Introduction

The software history is populated with examples about developments that
failed because they were delivered out of time or because their cost was
higher than the planned one. Because of these reasons, in 2001, a group of
developers had a meeting in Utah to establish the basis for a new and better
way to develop software. As a result of this meeting, the Agile Manifesto [5]
was born, in which the developers enunciated four core values and twelve
principles. The main ideas proposed by these values and principles encour-
age the people developing software to embrace the change and get really
involved with the di�erent stakeholders. The ideas in the manifesto were the
cornerstone for the methodologies that would be born during coming years
such as Scrum, Kanban, eXtreme Programming (XP), among others. But it
is needed to say that Agile is not only a set of methods that conform to a
methodology, its concept goes beyond that and tries to change the way in
which a developer, team or company thinks and behaves, so it is also possible
to call it a di�erent mindset [62].

1.1 Measurement and Metrics

For years now, humans have been measuring things such as distance, time,
velocity, temperature, etc. and the software industry is not an exception. For
Information Technology (IT) managers, it is important to measure how much
or how long a project will take, as well as di�erent aspects of the development
life-cycle or team's performance. On the other hand, for software developers
it is important to have predictable and repeatable development processes

1

Introduction

that allow teams to shift the software to production in a controlled manner
at any time [14]. That is why they began to measure things like cost, e�ort,
defect rates, lines of code (LOC), pages of documentation, among others [63].
But despite the e�orts, the delivery of software is generally not reliable,
this produces projects that are often delivered late, with a reduced scope of
features.

Despite the fact that measuring di�erent variables during the life-cycle
of a development seems like an easy task, it is di�cult to do it right be-
cause there are so many variables implied during the process that it can be
hard to select the right ones to measure. If to time and budget are added
other variables such as the methodology (e.g. Waterfall, Scrum) used to de-
velop and/or the type of delivery to the customer (i.e. annually, quarterly,
monthly, weekly or even continuous delivery), the selection of the variables
to be measured becomes a really complex work. Although it can be a hard
task to determine what to measure, it is necessary because the measurements
provide a full picture of what is happening in a project, or within a team.
Further, measurements can provide insight on how changes in aspects such as
team's composition, used tools, methods, or methodologies, a�ect the team's
performance. This information is useful not only for developers in a team,
but also for managers who want to know what to change to keep improving
his or her teams.

While measurement is a quantitative observation of a speci�c attribute,
a metric is the result of taking a certain measurement recurrently [45]. It
somehow needs to have informational, diagnostic, motivational or predictive
power, so that it can help in understanding how far from the expected results
a project is or what is the impact of a change. In software development, met-
rics have the main purpose of directing the work towards a goal by showing
how the actual performance di�ers from the expected one, and guiding pro-
cess improvements by showing the variability in the performance of a process
after changes in practices or methods used. As it was settled, it is simple to
collect data, even though there are related costs and e�orts while tracking
metrics. This is the reason why each metric should be justi�able and have
a purpose. In other words, a metric should be pragmatic and provide useful
information to stakeholders that have to take decisions.

According to Nicolette [45], the e�ects produced by a metric allows to
classify them in three categories:

� Informational: the metric provides plain information.

2

1.1. Measurement and Metrics

� Diagnostic: the metric calls attention to a problem.

� Motivational: the metric in�uences people's behavior.

There is a big number of metrics that can be grouped by the methodology
applied during development, as well as some metrics that are not attached
to a methodology in particular. Because of this wide range of possibilities,
it can be di�cult for a team or a manager to select a reduced set of metrics
at the beginning of a project, among all the metrics available. Despite this
situation, it is highly recommended to revise and adapt periodically the set
of metrics chosen.

According to Rod Stephens [63], the characteristics that any metric must
have are:

� Simple: the metric must be easy to understand.

� Measurable: it must be possible to measure the attributes that con-
form a metric.

� Relevant: the metric must provide useful information that leads to
actions.

� Objective: the results must come from objective data rather than
subjective opinions.

� Easily obtainable: it must not take too much time to team members
to gather data.

1.1.1 Measurement of Scrum

Scrum is an Agile framework that allows companies of all stripes (e.g. In-
formation Technology (IT), Product Development, Operations, Finance) to
innovate and remain competitive [1]. This framework has a team-based ap-
proach to delivering value to business frequently in short periods of time that
goes from one week to four weeks. This approach provides a faster feedback
to the teams, giving them the chance to adapt to changes more quickly.

But not all the teams that start trying this framework have successful
experiences with it. One possible solution is to obtain metrics that can help
in having a perspective on how well a Scrum Team is performing, or what
di�culties a team has in order to increase its productivity.

3

Introduction

Because of these reasons, Agile and Scrum are two core concepts studied
in the current work. This will be explained in depth on Chapter 2.

1.2 Research Problem

In light of the above discussion on measurements and metrics, the research
problem that this thesis aims to address is how to measure the performance
of Scrum Teams more e�ectively. Usually, a metric program is expensive and
time-consuming, but without it, it is di�cult to have evidences that support
decisions taken in a project or an organization. Metrics give quantitative in-
sight about performance and provide measurable goals. But to be successful
with metrics, it is necessary to measure things that can be measured and can
lead to di�erent actions. It is futile to measure things just because they are
easy to measure, or to have a metric that does not give insight about the
impact that a decision or an action had.

Measuring is a good action to be carried out in software development, but
if it is not done in right way, it can lead to di�erent problems. One of them is
that sometimes managers try to measure a lot of variables, generating a lot
of information. This massive amount of information causes the teams and
managers to lose focus and they end working on weaker aspects. Another
problem is that when the wrong variables are measured, a manager will not
notice that something is going wrong in the development till it is really late.
Also there is the possibility that the developers adapt their behavior accord-
ing to what is measured by the managers to give them the impression that
they are performing well. Another aspect to consider is that the collection
of data should not cause interruptions or slow down the team's work.

In order to succeed with a measurement program, it is important to es-
tablish the goal of the metric program at its very beginning. This will allow
to have a clear view of the purpose of it and avoid information overload.

1.3 Objectives

Following are the main objectives that this thesis aims to achieve:

� Investigate about useful metrics for working environments where the
Scrum framework is applied.

4

1.4. Outline

� Provide a software solution that facilitates the measurement procedure,
through the integration and implementation of di�erent tools.

1.4 Outline

The remainder of this document is divided into the following chapters.
Chapter 2 and Chapter 3 while providing a detailed explanation on Agile

teams and Scrum and Metrics for Scrum teams uses the existing literature
and material on the topic to provide the basis for the current thesis as a
progress over the already available material. These two chapters therefore,
establish the theoretical framework for the thesis.

In addition, Chapter 4 discusses existing surveys with an additional sur-
vey conducted for the thesis to corroborate and add to the previous studies.

Chapter 5 provides for the analysis of available tools for software project
management and their measurement. This chapter will clearly detail the
tool chosen as result of the analysis, and describe the implementation of the
solution for generation of useful metrics for better environments for Scrum
Teams. Thus, the main aim of the chapter is to elaborate the architecture
of the application developed, metrics obtained and results of the implemen-
tation.

Finally, Chapter 6 concludes the work by reviewing its main contributions,
and possible future work that can be done.

5

Introduction

6

Chapter 2

Agile Teams and Scrum

Even though the Agile movement started at the beginning of the XXI century,
it is only today that the companies have realized that they need to adapt
quickly to the changes to remain competitive in the volatile market. While a
mere quick adaptation will not guarantee success, it is a good way to achieve
the main goal of any company, that is to have happy customers. And one
of the best ways to go along this path is incorporating the Agile values and
principles through at least one of its mature set of methodologies.

According to a 2016 survey known as the 11th annual State of Agile Re-
port, sponsored by the company VersionOne 1, respondents say that the
top �ve reasons for adopting agile are: Accelerate product delivery, Abil-
ity to manage changing priorities, Increased team productivity, Improved
project visibility, and Enhancement of software quality. And despite the fact
that 98% of the respondents' organizations have realized success from agile
projects, more than 50% of their teams are not practicing agile [54]. This
is due to some challenges that organizations experience while adopting agile
such as company philosophy (or culture) does not match with agile values,
lack of experience on agile methods, lack of management support, among
others.

Another interesting fact that can be pointed out from the report is that
since at least three years Scrum is the most used methodology by respondents'
organizations, with more than 50%. And the second most used is a hybrid
between Scrum and XP, with 10%.

The present chapter will introduce the necessary concepts to understand

1https://blog.versionone.com/insights-from-11th-annual-state-of-agile-report

7

https://blog.versionone.com/insights-from-11th-annual-state-of-agile-report

Agile Teams and Scrum

agile and its philosophy (Section 2.1), and Scrum, the most used framework to
adopt agile (Section 2.2). These concepts will set the basis for the Section 2.3
and the Chapter 3.

2.1 Agile Concepts

Agile can be de�ned as a mindset and a set of methods and methodologies
which provide a way to think more e�ectively, work more e�ciently and make
better decisions. And it also makes the following promises [62]:

� Projects delivered on time.

� High-quality software.

� Code well constructed and highly maintainable.

� Happy users.

� Developers working normal hours.

Even though the adoption of Agile can seem a safe bet, it is important
to remark that it is not only the adoption of practices or techniques, but a
full change of mindset that can lead to a complete overhaul. If there is a
fractured perspective in the team, meaning that if each team member cares
only about his or her job, the results may be better but they will be far from
the promised ones.

The mindset shift is about sharing the same information and a feeling
of ownership among all the members of a team. This can be achieved by
opening up planning, design, and process improvement. Also it implies that
each person's opinion matters, because if one of the members does not agree
with the way that the team will work, it can drop the performance of the
whole team.

2.1.1 Values and Principles

The ideas implied in the agile culture di�er completely from the ones in
waterfall process, in which at the very beginning of a project all that is needed
at the end of it, is known. In a waterfall process, the requirements must be
well planned and de�ned upfront in a detailed document called speci�cation.

8

2.1. Agile Concepts

This document is given to the developers who will develop what they interpret
about what is written. After development comes a testing phase, and, �nally,
the product is delivered to the customers. But it is very likely that there were
misinterpretations or misunderstandings about the requirements, or that the
needs of the customer have changed since they settled the requirements. In
this situation the team has to start the entire process again.

The agile mindset is the result of the ideas, principles and values estab-
lished in the Manifesto for Agile Software Development (also known as Agile
Manifesto) [5], created in 2001 by a group of people who wanted to change
the way in which software was being developed. In this document, they wrote
four core values:

� Individuals and interactions over processes and tools

� Working software over comprehensive documentation.

� Customer collaboration over contract negotiation.

� Responding to change over following a plan.

The authors of this document do agree that there is value in the items on
the right, but they value more the ones on the left.

With these concepts in mind, it is possible to interpret the ideas present
on the values as follow:

� the ideas, concerns, motivations, interrelations and communication among
the people who are working in a team are more important than the tools
or processes that will be used;

� a team should concentrate on delivering software that adds value to
the organization instead of writing complete and comprehensive docu-
mentation, but this does not mean that a team should not document;

� a customer should be involved with the team in the software develop-
ment process;

� and a team needs to make sure that it responds appropriately any time
there is a change in the needs of the customer, or the way the software
needs to be built.

The signatories of the Agile Manifesto created 12 principles for agile soft-
ware development 2, to support the above-mentioned values and to motivate

2https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/

9

https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/

Agile Teams and Scrum

teams to build software that the users actually need. The principles are the
following:

1. Our highest priority is to satisfy the customer through early and con-
tinuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout
the project.

5. Build projects around motivated individuals. Give them the environ-
ment and support they need, and trust them to get the job done.

6. The most e�cient and e�ective method of conveying information to
and within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, devel-
opers, and users should be able to maintain a constant pace inde�nitely.

9. Continuous attention to technical excellence and good design enhances
agility.

10. Simplicity�the art of maximizing the amount of work not done�is es-
sential.

11. The best architectures, requirements, and designs emerge from self-
organizing teams.

12. At regular intervals, the team re�ects on how to become more e�ective,
then tunes and adjusts its behavior accordingly.

The main purposes of these principles are: to enhance the software deliv-
ery, the communication both among team members and with customers, as
well as the execution of the software development during its whole life cycle,
and to be constantly improving both the project and the team.

10

2.2. Scrum concepts

2.1.2 Methodologies

Agile methodologies are a collection of practices, ideas, advice and a body of
knowledge [62], constructed on the basis of the agile values and principles,
to help to adopt them. They also help to see the practices in context, that
allows novel agile practitioners to get in touch with agile concepts more easily
and quickly.

Some of the most known methodologies are: Scrum, it is an iterative and
incremental way to produce software that will be described deeper in the
Section 2.2; eXtreme Programming (XP), in which teams produce deployable
software every week using speci�c development practices that help to keep
the software simple and maintainable [4]; Lean, is a mindset with its basis on
seven principles drawn from the principles of Lean Thinking, the main idea
behind these principles is to let customers take decisions about what they
want as later as possible, and when they want something give it to them as
soon as possible [51]; and Kanban, this is a simple but powerful agile method
with the main idea on limiting the Work In Progress (WIP) done on each
stage of the software development process, this provides transparency [27].

2.2 Scrum concepts

Scrum was born in 1993 at the Easel Corporation as a structure for iterative,
incremental software development framework, and nowadays it is the most
used methodology by small and large companies trying to be agile, all over
the world.

According to Je� Sutherland, one of the fathers of Scrum together with
Ken Schwaber, Scrum is an agile method designed to add energy, focus,
clarity, and transparency to project planning and implementation [64]. In
The Scrum Guide of 2016, Ken Schwaber and Je� Sutherland de�ne Scrum
as a framework within which people can address complex adaptive problems,
while productively and creatively delivering products of the highest possible
value [65]. This framework consists of Scrum Teams with associated roles,
events, artifacts, and rules. Each of these components has a speci�c purpose
that makes impossible to succeed with Scrum if they are not well employed
and considered essentials.

The three main pillars of Scrum are transparency, inspection and adap-
tation. They come to life when the values of commitment, courage, focus,

11

Agile Teams and Scrum

openness and respect are shared and lived by the Scrum Team [32].

2.2.1 Scrum Teams

The Scrum Guide [65] establishes three main roles for a Scrum Team as
follows:

� Product Owner: is the person responsible for maximizing the value of
the product and the work of the Development Team throughout the
management of the Product Backlog. Some of the management tasks
include: clearly expressing Product Backlog items, ordering them to
best achieve goals, ensuring that is visible and the Development Team
understands its items.

� Development Team: is the group of professionals who do the work of
delivering a potentially releasable Increment of the product at the end
of each Sprint. The people in the team must have cross-functional
skills in order to be able to create a product Increment. And only they
can set how to turn the Product Backlog items into Increments. An
important aspect about a Development Team is its size, a rule of thumb
is to have a team of 7± 2 members, without including Product Owner
and Scrum Master.

� Scrum Master: is responsible for ensuring that Scrum is understood
and all adheres to its theory, practices, and rules. She is also a servant-
leader who helps the Product Owner (e.g. �nding techniques for e�ec-
tive Product Backlog management) as well as the Scrum Team (e.g.
removing impediments to the team's progress) and also the Organiza-
tion (e.g. planning Scrum implementations within the organization).

The above-mentioned roles are designed to optimize �exibility, creativity
and productivity. There are no Product or Project Manager roles. The self-
organization allows team to choose how best to accomplish their work, while
with the cross-functionality a team does not depend on people that are not
part of it to accomplish the work.

2.2.2 Scrum Events

Events in Scrum provide opportunities for inspection, adaptation, and trans-
parency. They all have a maximum duration, that is why they are called

12

2.2. Scrum concepts

time-boxed events. Next there is a list of the events and a brief description
of them [65]:

� The Sprint: is a time-box of four weeks or less, in which the Devel-
opment Team creates a usable and potentially releasable product In-
crement. This helps limiting the risk to a maximum of one calendar
month of risk. It has to be considered that once a Sprint starts, it
cannot change its duration. Immediately after a Sprint �nishes, the
next one starts, this is the reason why Scrum is iterative and incremen-
tal. The Sprint is the heart of Scrum because it contains all the other
events.

It is recommended for productivity reasons to keep the Development
Team focused on one Product for one Sprint, and avoid multitasking
across multiple applications.

� Sprint Planning: this events occurs at the beginning of each Sprint,
where the entire Scrum Team plans the work to be performed in that
Sprint. Its time-box is of a maximum of eight hours for a one-month
Sprint, with a rule of thumb of two hours per week that the Sprint lasts.
Usually it is divided in two parts. In the �rst part of the meeting, the
Development Team and the Product Owner review the Product Back-
log, the �rst forecast the functionality that will be developed during
the Sprint, while the second gives context to the items. Finally, both
of them set a Sprint Goal, which is an objective to be met within the
Sprint through the implementation of Product Backlog, and provides
guidance to the Development Team.

In the second part of the Sprint Planning, the Development Team de-
signs the system and breaks the Product Backlog items down to smaller
pieces called Tasks, which have a duration of a day or less. The list of
tasks is recorded in a document called the Sprint Backlog.

� Daily Scrum: also known as the Daily Stand-Up Meeting, is a time-
boxed event of �fteen minutes held at the same place and time each
day. It helps to synchronize activities and create a plan for the next 24
hours, presenting the information needed to inspect progress. Holding
this meeting each work day has the following bene�ts: improvement in
communications and the Development Team's level of knowledge, elim-
ination of other meetings, identi�cation of impediments to development
for removal, and promotion of quick decision-making.

13

Agile Teams and Scrum

� Sprint Review: this event is held at the end of a Sprint to inspect
the Increment and adapt the Product Backlog if needed. The main
intention of this meeting is not to give status to the stakeholders, but
elicit feedback from them and promote their collaboration. The result
of the Sprint Review is a revised Product Backlog for the next Sprint.
This is a four-hour time-boxed event for one-month Sprint, so it is
possible to set a rule of thumb of one hour for each week that the
Sprint lasts.

The Sprint Review involves inspect and adapt regarding the product.

� Sprint Retrospective: in this meeting, the Scrum Team inspects itself
regarding to people, relationships, process and tools. As a result, they
agree on what is working and create a plan to improve in the next Sprint
the way the Scrum Team does its work. This event is a three-hour
time-boxed meeting for one-month Sprints, and it is usually shorter for
shorter Sprints.

The Sprint Retrospective involves inspect and adapt regarding the pro-
cess and environment.

The events can be summarized as follow in the table 2.1:

Event Max Duration Participants
Sprint 4 weeks SM, PO, DT

Sprint Planning 2 hours per week of Sprint SM, PO, DT
Daily Scrum 15 minutes each day SM, DT
Sprint Review 1 hour per week of Sprint SM, PO, DT, SH

Sprint Retrospective 45 minutes per week of Sprint SM, PO, DT

Table 2.1: Scrum events summary. SM = Scrum Master, PO = Product Owner,

DT = Development Team, SH = Stakeholders.

2.2.3 Scrum Artifacts

The Scrum's artifacts are a mechanism to provide transparent information
to the Scrum Team as well as any stakeholder or even the organization [69].
The information provided by the artifacts creates opportunities for inspection
and adaptation. The artifacts are de�ned as follow [65]:

14

2.2. Scrum concepts

� Product Backlog: this is an ordered list of everything that might be
needed by the product (i.e. functions, features, �xes, etc.), and which is
constantly evolving with the product Sprint after Sprint. The Product
Owner is the responsible for its content, availability, and ordering. The
Development Team is responsible for the estimates of the items on the
Product Backlog. The Scrum Team as a whole is responsible for re�ne
the Product Backlog adding details, estimating and ordering its items.

Those items that are on the top of the list, have enough detail and
can be �Done� by the Development Team within a Sprint, are deemed
�Ready� for selection in a Sprint Planning.

The de�nition of �Done� is an agreement that conforms to an organi-
zation's standards, conventions and guidelines. This document de�nes
all the activities that are needed for creating a Potentially Shippable
Product Increment.

� Sprint Backlog: this is the set of Product Backlog items selected for a
Sprint, plus a plan with the work needed for delivering the Increment
and meeting the Sprint Goal. The Development Team is the only one
who can add or remove items from a Sprint Backlog during a Sprint.
This artifact provides a highly visible, real-time picture of the work
that the Development Team plans to accomplish during a Sprint.

� Increment: this is the sum of all the Product Backlog items completed
during a Sprint and the value of the increments of all previous Sprints.
It must be usable and meet the Scrum Team's de�nition of �Done�,
this is the standard that a team has to accept an item as a complete
one, this will expand as the Scrum Team matures. Each increment is
additive to all prior Increments, so they must be able to work together.

The roles, events and artifacts of Scrum are summarized in the Figure 2.1:

15

Agile Teams and Scrum

Figure 2.1: Scrum overview. Source [64]

2.3 Conclusion: Agile teams practicing Scrum

A team in which there exist only the roles listed in Section 2.2.1, drives and
respects the time-boxing of each event in Section 2.2.2 and builds all the
artifacts presents in Section 2.2.3, is called a Scrum Team.

These teams are characterized by self-management, a very visual way to
see how a project is going throughout di�erent graphics (e.g. task board),
and a quick adaptation to changes, despite the seniority of its members.

Nevertheless, all of this does not guarantee the success of the team if
there is no real commitment with the project, trust among its members, or
they do not agree with the methodology or the agile values.

16

Chapter 3

Metrics for Scrum Teams

As it has been depicted in Chapter 2, there are di�erent promises that the Ag-
ile software development approach makes, but this approach (and its method-
ologies) is not exempted from the inconveniences present in any software de-
velopment process, even if the philosophical barrier related to the mindset
change is overcome. Since it is pertinent to know how well the agile process
is applied in a team, or how happy the customers are with the product, it is
necessary to measure di�erent aspects during the software life-cycle.

According to the 11th annual State of Agile survey [54], the top �ve mea-
surements where agile practitioners focus to evaluate the success of their agile
initiatives are the followings:

� On time delivery (53%).

� Business Value (46%).

� Customer/user satisfaction (43%).

� Product Quality (42%).

� Product Scope (40%).

On the other hand, it is di�erent how the success of an Agile Project is
measured, as it is possible to observe in the following top �ve:

� Velocity (67%).

� Iteration burn-down (51%).

17

Metrics for Scrum Teams

� Release burn-down (38%).

� Planned vs. actual stories per iteration (37%).

� Burn-up chart (34%).

In the above-mentioned ranking, the business value delivered is in the 11th

position with a 23%.
These di�erences can be due to many reasons such as a weak metric

plan, management and teams not sharing the same objective, or that the
management asked the team to adopt agile values but it did not yet. In order
to avoid these kind of situations, the management needs to set a concrete
plan to collect the metrics in which the importance, purpose, cost, target,
etc. of each metric is well established. This is needed to have a clear vision
of the goal pursued by the organization and avoid information overload.

In the following sections the key concepts to select meaningful metrics
will be established (Section 3.1), classify them according to di�erent aspects
(Section 3.2), de�ne useful metrics for Scrum teams (Section 3.3), and, �nally,
a set of metrics that have to be avoided will be presented (Section 3.4) .

3.1 When is a metric useful?

According to Nicolette [45], a metric that helps a stakeholder to make a
decision is a pragmatic one. This idea is independent of the approach applied
to develop software, because for a plan-driven approach metrics will be used
to track team's performance compared with a plan which has a �xed budget,
scope and schedule. For an Agile approach, metrics will be used to assess
whether the scope, schedule, or budget has to be adjusted to keep work
on track. In addition to the general approach, the author proposes that the
process (i.e. Linear, Iterative, Time-boxed, Continuous �ow) and the delivery
mode (i.e. discrete project or ongoing development and support) have to be
considered.

Hartman and Dymond [23] distinguish between metrics and diagnostics,
former being de�ned by the organizations and the latter, determined by the
teams. To support their selection, they give a list of ten items that a good
Agile metric (or diagnostic) needs to have:

1. A�rms and reinforces Lean and Agile principles. The metric
should be consistent with the values and principles seen in Section 2.1.1.

18

3.1. When is a metric useful?

2. Follows trends, not numbers. Numbers by themselves do not have
any meaning, but when they are observed throughout the historical
data, and giving them a context, they become a valuable tool.

3. Belongs to a small set of metrics or diagnostics. If a metric is
general or has multi purposes, it is likely that it does not meet expec-
tations of any of the objectives for which it was created.

4. Measures outcome, not output. Output can be de�ned as any
physical or virtual product, while an outcome is the bene�t that cus-
tomers receive from these products 1. Because the aim of Agile method-
ologies is to give customer values, a metric that provides information
about outcome will generate information that is useful not only for
Scrum Teams, but also for the customers.

5. Is easy to collect. The collection of metrics should not interfere
with the work of the developers, they do not have to feel that they are
wasting time while providing information.

6. Reveals, rather than conceals, its context and signi�cant vari-
ables. Agile methodologies promote openness and trust among team
or organization members, this only can be achieved through sharing
information with people that may or may not be involved directly in a
project.

7. Provides fuel for meaningful conversation. A metric that does not
generate any discussion between organizations members is not working
well. When there is trust among team members, it is possible for them
to have discussions regardless their position nor their experience. This
generally leads to improvement regarding not only the people involved
in the discussion, but also their organizations or teams.

8. Provides feedback on a frequent and regular basis. It is probable
that when a person asks for a metric, at that moment it is necessary
to act of urgency. The metrics should be available every time a person
asks for it.

9. May measure Value (Product) or Process. According to Press-
man, measurements can be applied to the software process to improve

1https://hbr.org/2012/11/its-not-just-semantics-managing-outcomes

19

https://hbr.org/2012/11/its-not-just-semantics-managing-outcomes

Metrics for Scrum Teams

it continuously, or can be applied to a project (or product) to adapt
the work�ow of a team. The metrics that measure the process have
strategical purposes (e.g. release frequency), while the product metrics
have tactical purposes (e.g. estimation of time or costs, reduction of
risks) [53].

10. Encourages �good-enough� quality. In every software development
process, quality is a key value that allows an easy maintainability of a
system.

The above-mentioned elements provide the management and teams with
a uni�ed criteria to establish good metrics on their metrics plan.

3.2 Classifying Metrics

In any agile program it is important to track both business metrics and agile
metrics. While business metrics focus on whether the solution is meeting the
market need, the agile metrics measure aspects of the development process.
It is also valuable for Scrum Team's adaptation and improvement to have a
success criteria which guides the team on its future steps.

The bibliography about metrics classi�cation o�ers a wide range of dif-
ferent perspectives in which di�erent aspects such as target audience, infor-
mation provided, area of usage, etc. are taken into account to categorize
the metrics. The current section will discuss some points of view that will
help in the following sections to better understand the metrics and their
implications.

3.2.1 What type of variable do they measure?

The �rst criteria that can be used to make a distinction between metrics is
also used to distinguish variables. In this, they are divided in two groups:
qualitative (e.g. value delivered last sprint, team's progress in adopting agile
techniques and processes) and quantitative (e.g. Lead Time, Cycle Time,
number of defects escaping to production) metrics.

While the �rst ones provide better insight for teams, the last ones do
so for the organizations. Despite of the type of metrics collected, teams
and organizations should pay more attention to the trend than the absolute

20

3.2. Classifying Metrics

number showed by them because the trend will tell the e�ect of the changes
applied to improve a practice, technique, or process.

3.2.2 What information do they provide?

Eric Ries de�nes two types of metrics: vanity metrics and actionable met-
rics [55]. Actionable metrics are those in which the causes of their increment
or decrease are clear, and with this knowledge, the teams can replicate re-
sults. Besides, metrics must be accessible, this means that reports must be
as simple as possible to make them understandable and reachable by ev-
eryone who need them. Furthermore, it is essential for good metrics to be
�auditable�, which means the data employed to generate the metrics must be
credible and the results obtained can be tested in the real world without the
tool that provided the metrics.

All the other metrics are vanity metrics (e.g. gross number of costumers),
because they do not give insight about why something is happening and this
can lead to misconceptions about what actions are needed for improvement.

3.2.3 Do they look at the present or the past?

Mike Cohn introduced the concepts of leading and lagging indicators [10].
A lagging (or trailing) indicator is something you can measure after a series
of actions have been executed, and can be used to determine if a goal was
achieved, e.g. the number of defects reported in the �rst 30 days after a
release.

On the other hand, a leading indicator is available in advance and can
tell a team or a project manager if a goal is likely to achieve. An example of
a leading indicator for a team that wants to improve its quality could be the
number of nightly test that pass.

A similar way to classify metrics was used by Nicolette [45] who called
traditional support metrics as backward-facing metrics because it is needed
to face the past in order to see the target. Similarly, the forward-facing
metrics to those that support adaptive development, because in order to see
the target, it is needed to face the future.

21

Metrics for Scrum Teams

3.2.4 What are they used for?

Kupiainen et al. [30] classi�ed the metrics according to the reason they were
used in the following categories:

� Iteration Planning: here the metrics were focused to help in prioriti-
zation of tasks or features, forecast e�ort estimation, or Development
Team's velocity.

� Iteration Tracking: here metrics can be found to monitor, identify prob-
lems, or predict results, as well as progress metrics that are useful to
focus work on tasks that are really important.

� Motivating and Improving: the metrics in this section are used to moti-
vate people and support team level improvement of practices/processes.

� Identifying Process Problems: in this section the metrics are often used
to avoid problems in processes and work�ows.

� Pre-release Quality: metrics in this category are used to prevent de-
fects reaching customers and to understand the current quality of the
product.

� Post-release Quality: it consists of those metrics that allow to evaluate
the quality of the product after it has been released.

They also analyzed how the metrics in each category support the twelve
principles of Agile Manifesto seen in the previous chapter (2.1.1).

3.3 Scrum Metrics

The Scrum Guide [65] establishes the rules that govern the Scrum framework
as seen in the previous Chapter (2.2). And also it sets two things to monitor,
but it does not de�ne a speci�c way to do so, giving to Scrum Teams the
freedom to choose their own methods.

The �rst thing to monitor is the total work remaining to reach a goal
(progress towards a goal) which should be controlled at least every Sprint
Review, and be available to any Stakeholder.

The second one is the total work remaining in the Sprint Backlog, which
should be tracked at least at every Daily Scrum, so that the Development
Team can manage its progress.

22

3.3. Scrum Metrics

The current section will show the common metrics used by Scrum Teams
as well as the metrics which di�erent authors have proposed in order to track
di�erent aspects that could help teams and management to improve products
or processes.

3.3.1 Burn-down

A way to show progress in a Project for either a Sprint or a Release is through
the Burn-down chart (see Figure 3.1). It is a graph that consists of two axis
in which the horizontal axis represents time, and the vertical axis represents
the amount of work remaining (usually measured in Story Points or ideal
engineering hours). Then a line is drawn to connect the dot in the vertical
axis that represents the amount of work addressed by the team in the current
Sprint, and the dot in the horizontal axis corresponding to the last day of
the Sprint. This line is useful to check if the team is going to have problems
to reach the goals of a Sprint or a Release. The di�erence between a Sprint
and a Release Burn-down is that while in the �rst chart the unit of time is
days, in the latter chart the time is measured in Sprints.

As the Sprint advances, each day the Scrum Team adds a dot correspond-
ing to the amount of Story Points remaining in the Sprint Backlog. The chart
will be modi�ed only when any Sprint Backlog item have reached the team's
de�nition of Done.

Figure 3.1: Example of Burn-down chart. Source [62]

23

Metrics for Scrum Teams

This graph allows the whole team to realize when they have committed
to more/less work than they could deliver, or what are the impediments to
making progress. And it should be used as a debating tool to make trade-o�s
or improve the communication within the team or with other sectors of the
organization, instead of being used as a command and control tool.

A variant of this chart is known as the burn-up chart, which shows the
accumulated work Done by day.

3.3.2 Velocity

The velocity is used as a forecast measurement. This variable is calculated
as the average of the Product Backlog items really Done in previous Sprints,
and it represents the amount of work that a team is likely to address in the
next Sprint. The units used to measure this variable are the same that are
used to estimate the items in the Product Backlog. Usually teams measure
those items in Story Points, they can either represent how many work days or
hours a User Story will take to develop, or be used as an abstract comparative
measurement among User Stories. This method of measurement is inherent
to each Scrum Team, which means that it varies from a team to another. As
a consequence of it, this variable cannot be used to compare teams.

There are some factors that make a team's velocity volatile such as in-
corporation of new team members, team members leaving, seniority levels,
holiday or sick leave, working unknown territory, among others. Even then,
it is important for a team to know its velocity because they can realize how
a change in a process or a practice impacts on its velocity. This variable also
helps to predict how quickly a team can work through the Product Backlog,
giving an idea of how many iterations will be needed to complete the required
work, but it does not give any information about the progress or success of
a Project. It should neither be used as a driving nor an agile adoption met-
ric, because it may either cause the team over-estimates the User Stories
or a decrease in the quality of the software produced with the consequent
slow down in the value delivered to the customers. On the other hand, a
team with excellent velocity could spend time delivering software that the
customer does not want or has been waiting for.

Managers must consider that it is expected for a stable team on the same
project with the required resources to gain velocity during the course of the
Project until it stabilizes.

24

3.3. Scrum Metrics

3.3.3 Productivity

The productivity of a Scrum Team can be measured in di�erent ways. The
use of Story Points or ideal days to do this task is not recommended because
it can lead the team to in�ate its estimates if they are under pressure to
improve or deliver more points per Sprint. A better way to do this is through
the number of Product Backlog items delivered or the percentage of Product
Backlog items completed versus planned at the end of a Sprint.

From a management perspective this can be measured as the division
between the amount of Story Points completed in a Sprint and the budget
that it costs.

3.3.4 Lead Time and Cycle Time

Two interesting metrics that are used by Kanban teams but can be bene�cial
for Scrum Teams as well are Lead Time and Cycle Time. The Lead Time is
a measure of how long it takes for an item to be delivered to the customers
from its creation [52]. A Scrum Team can measure its responsiveness by
tracking the time from when an item enters in the Product Backlog until it
either comes out of an iteration or is delivered to the customer. Using Mike
Cohn's classi�cation (see 3.2.3), it can be said that as a Trailing Indicator
historical trends of Lead Time give a way to understand how long it is likely
to take to deliver similar work items. While as a Leading Indicator it can be
used to indicate the likely duration of the end-to-end �ow of work through
the system, it is necessary to consider that Lead Time by itself does not
help to visualize the causes and impacts of variability within a team or an
organization.

The Cycle Time measures the total time from "In progress" to "Done"
of all the items in a Sprint (i.e. tasks, User Stories), and also the time spent
by the items on each work�ow state. As a Trailing Indicator a Cycle Time
analysis of historical trend data shows where work items are getting stuck.
While as a Leading Indicator, it can be used to predict likely duration of
similar work items within a range of possibilities.

For any team, its goal should be to have a short and consistent cycle time,
which will translate into higher throughput and more predictability. This
measurement is an e�cient tool to see almost immediately how a change
in team's process impacts on it. With these de�nitions in place it can be
inferred that the Lead Time is what is relevant from a business perspective,

25

Metrics for Scrum Teams

because it gives insight into the customer's experience; while Cycle Time is
a measure of team's process capability, helping to identify impediments and
improvements opportunities within an organization.

3.3.5 Value

Metrics should help validate business investments and the value delivered by
teams. Some key metrics of interest to the business are the amount of capital
required and the return on investment (ROI), which can be captured with
Value. Value is de�ned as software put into production that can return an
investment over time [23].

There are many ways to measure business value delivered such as Net
Present Value (NPV), Internal Rate of Return (IRR), or Return on Invest-
ment (ROI). In an agile project, the ROI begins since the software is released
into production for �rst time. It is necessary to de�ne if Value will be ac-
counted at the close of each Iteration, or at the time of release to production,
the last option being the most recommended one.

3.3.6 Quality

Monitoring software quality is a non-trivial task because it cannot be per-
formed in the same way across di�erent projects. It is a process that requires
the selection of relevant quality attributes which are project speci�c, and
the selection of appropriate metrics to quantify these attributes. Software
quality metrics aim to measure how �good� a software is, from the point of
view of being error-free, and easy to modify and maintain.

In their study, Arvanitou et al. suggest that the same metric can be used
for assessing more than one attribute. The following list shows some of the
most used quality attributes and the metrics associated to them [3]:

� Maintainability:

� Depth of Inheritance Tree (DIT).

� Lines of Code (LOC).

� Weighted Methods per Class (WMC).

� Cyclomatic Complexity (CC).

� Re-usability:

26

3.3. Scrum Metrics

� Lack of Cohesion of Methods-1 (LCOM1).

� Lines of Code (LOC).

� Coupling Between Objects (CBO).

� Change proneness:

� Depth of Inheritance Tree (DIT) .

� Number of Children (NOCC).

� Coupling Between Objects (CBO).

� Understand-ability:

� Lines of Code (LOC).

� Depth of Inheritance Tree (DIT).

� External Class Complexity (ECC).

� Test-ability:

� Response for Class (RFC).

� Coupling Between Objects (CBO).

� Lack of Cohesion of Methods-1 (LCOM1).

� Modify-ability:

� Depth of Inheritance Tree (DIT).

� Stability:

� Weighted Methods per Class (WMC).

� System Design Stability (SDI).

Concas et al. based their study on some of the above-mentioned metrics
(present in the Chidamber and Kemerer suite) applied on a single software
development [12]. They found that there is a clear correlation between good
Agile practices and an improvement of the quality metrics. But Destefanis
et al. tried to verify this and they investigated if there was a relationship
between software metrics obtained from open source software developed using
Agile methodologies and plan-driven methodologies. They conclude that the

27

Metrics for Scrum Teams

use of Agile methodologies does not in�uence the distribution of the measured
metrics in the classes, this means that metrics distributions are similar for
software developed using Agile methodologies and software developed using
plan-driven methodologies [15].

These totally opposite results open the door to other questions such as
Does the software that has been developed use Agile methodologies from its
very beginning? Do teams know and believe in the Agile values? Are teams
skilled in Agile practices?

There is a large number of quality metrics that can be applied to Agile
Software Development such as number of defects found during development
or after a release, number of defects deferred to a future release, percentage of
automated test coverage, release frequency, or delivery speed, among others.
Alperowitz et al. propose the usage of some quality metrics to increase the
manageability of a software engineering project course. The set of metrics
proposed by the authors were based on good Agile practices present in the XP
methodology, and they enabled the instructors of the course to have a high-
level overview over the projects to recognize problems as early as possible [2].
They organized the metrics as follow:

� Merge Management:

� Lifetime: the measure of the average lifetime of a merge request
between the creation of the request and the point at which it was
merged.

� Work�ow: this measures the percentage of merge requests with
feedback (comments or tasks) in a week.

� Continuous Integration:

� Time to �x: is the average period of time between a failed build
and the �rst successful build on the team's main development
branch.

� Builds: the absolute numbers of successful and failed builds.

� Continuous Delivery:

� Delivery to customer: the number of successful downloads of a
release by customers.

28

3.3. Scrum Metrics

� Downloads: the number of times that a successful biuld was down-
loaded to a team member's device.

Another aspect related with the quality of the software is known as Tech-
nical Debt, which is a metaphor about the consequences of poor software
development practices. The emphasis on quick deliver in Agile Software De-
velopment makes this way to develop software more prone to incur on Tech-
nical Debt, and if it is not strategically controlled, Scrum Teams will have to
make a great e�ort into �xing defects or addressing stability issues [6]. As a
consequence of this the team is likely to reduce its working speed and pro-
ductivity, which will not only have a technical impact on the project but also
an economical one. In order to measure the Technical Debt, it is possible to
use code analysis tools which can measure things like percentage of repeated
code, Cyclomatic Complexity, or number of lines of code in the largest class,
among others. But the code analysis tools are not enough because most of
the time the Technical Debt is not only related with the code, but also with
architectural decisions or technological gaps.

3.3.7 Metrics for Hyper-productive Teams

Downey and Sutherland [16] say that Story Points, Burn-down chart and
Team Velocity are lightweight tools that provide insu�cient information. In
order to develop and sustain Hyper-productive teams, the authors propose
ten metrics that can be collected without slow a team down, and used to com-
pare Scrum Teams with di�erent reference scales. According to the authors,
the following metrics clarify the impact of any modi�cation (i.e. tools, tech-
nology, process, team composition), help the Scrum Team measure their own
performance and make changes based on them, and are meaningful outside
of their team of origin:

1. Velocity: is the sum of all the original estimates of the work that a
team addressed in a Sprint.

Velocity =
∑

of original estimates of all accepted work

2. Work Capacity: is the sum of all work reported during the Sprint,
including the work done on non �nished Sprint Backlog Items (SBI).
This leads to a team to have a higher Work Capacity than its Velocity.

29

Metrics for Scrum Teams

To track the work done over each SBI, the following questions are used
in the Daily Scrum:

� What did WE achieve on the highest priority SBI that is not yet
completed (Priority 1)?

� What was OUR contribution on Priority 1 worth in Story Points?

� What is OUR plan for completing Priority 1 today?

� What, if anything, is blocking US or has the potential to slow US
down today?

This shift the focus of the Daily Scrum from the individuals to the
Sprint Backlog, and improves the quality and the speed of estimation.

3. Focus Factor: is the relation between Velocity and Work Capacity, and
it should remain in the neighborhood of 80% on average.

Velocity

Work Capacity

4. Percentage of Adopted Work: Adopted Work is work that is brought
forward from the Product Backlog at any point during the Sprint be-
cause the team has completed the original Forecast early.∑

Original Estimates of Adopted Work

Original Forecast for the Sprint

5. Percentage of Found Work: the Found Work is work associated with a
piece of Forecast Work which is above and beyond what was initially
expected but which must be completed to deliver the original work
item. ∑

Original Estimates of Found Work

Original Forecast for the Sprint

6. Accuracy of Estimation: this metric refers to the team's ability to cor-
rectly estimate the body of work during Sprint Planning. This number
should remain around 80% in healthy Scrum Teams. When this metric
goes above 88%, on average, it is likely that the team is being overly
conservative. And when it goes below 72%, on average, it can be due
to many reasons such as poor understanding of the SBI, the Product

30

3.3. Scrum Metrics

Owner is not available to the team during the Sprint, the team does
not understand the technology or the product that they are building,
among others.

1−
∑

Estimate Deltas

Total Forecast

7. Accuracy of Forecast: this metric refers to the team's ability to come
together in the Sprint Planning, select and devote to themselves to a
body of work that represents what they can achieve during the com-
ing Sprint. This number also should remain around 80%. When it
goes above 90%, the Scrum Master should evaluate if team is feeling
safe forecasting work, because they can be under-forecasting to avoid
reprisals. And when it goes below 75%, it is generally because the
Scrum Master does not protect the team well during the Sprint or the
team is heavily randomized.∑

Original Estimates∑
Original Estimates+

∑
Adopted Work+

∑
Found Work

8. Targeted Value Increase (TVI+): this metric measures how the team's
velocity varies along a Sprint.

Current Sprint's Velocity

Original Velocity

9. Success at Scale: this metric gives teams con�dence during Sprint Plan-
nings, and it also helps them select the right granularity for User Sto-
ries.

It groups the User Stories by their size according to the Fibonacci Scale
(1, ,2, 3, 5, 8, 13, ...), and based on historical data it gives an idea how
likely is a team to succeed with a User Story of a given size. For each
point on the Fibonacci Scale (Fp), the formula is:∑

Number of Accepted Attempts of scale Fp

Number of All Attempts of scale Fp

31

Metrics for Scrum Teams

Figure 3.2: Example of Sucess at Scale. Source [16]

10. Win/Loss Record: each Sprint is a Win only if:

(a) A minimum of 80% of the Original Forecast is Accepted by the
Product Owner.

(b) Found + Adopted Work During the Sprint remains at 20% or less
of the Original Forecast.

3.3.8 Actionable Metrics

Vacanti and Vallet carried out a study at Siemens Health Services [67], in
which they detailed how to shift from traditional Agile metrics (i.e. Velocity,
Story Points) to actionable �ow metrics (i.e. Work In Progress, Cycle Time
and Throughput). The main reason to shift was that although Scrum and
Agile practices improved di�erent aspects such as collaboration across roles,
speed, or code quality, a change was needed because the traditional Agile
metrics did not provide to the company the required level of transparency to
manage software product development at big scale. They established three
metrics to understand the Company's �ow of work:

� Work In Progress (WIP): any work item (e.g. User Story, Bug, etc.)
that is between "Sprint Backlog" and "Done" steps.

32

3.3. Scrum Metrics

� Cycle Time (see 3.3.4).

� Throughput: the number of work items that entered the "Done" status
for an arbitrary unit of time (e.g. User Stories per week). This metric
di�ers from velocity, which measures Story points per Iteration.

The above-mentioned metrics are inextricably linked through a simple yet
powerful relationship known as Little's Law :

Average Cycle Time =
Average Work In Progress

Average Throughput

These metrics are more transparent, because they provide a high degree
of visibility into the teams' progress, and they are more actionable as well,
because they suggest the needed team interventions to improve the over-
all performance of the process. And they provide improvements such as
reduction of the Cycle Time, increase in the productivity and the overall
predictability, along with a better process performance [68].

3.3.9 Metrics for Understanding Flow

In his study, Ken Power presents the following set of metrics that reveal how
work �ows in an organization [52]:

� Cumulative Flow Diagram (CFD): it is a chart that allows to visualize
the amount of work in each of the de�ned work�ow states, and trends
over time. This type of chart is useful to understand the behavior in
queues, and for diagnosing problems such as delays or other imped-
iments. As a Trailing Indicator, CFD shows a history of how well a
team's process is working for them. While as a Leading Indicator, CFD
can be used to forecast the probability of either delivering a desired set
of content by a given date, or the date by which a subset of the content
might be delivered.

� Throughput Analysis with Demand Analysis: a Throughput Analysis
(work items �Done�) reveals the rate of the �ow of work through the sys-
tem over time. And in combination with a Demand Analysis, it shows
how much work is Value Demand versus Failure Demand. As a Trail-
ing Indicator, Throughput Analysis shows how much work is moving
through teams or within an organization, and when it is combined with

33

Metrics for Scrum Teams

Demand Analysis, it shows what type of demand is being placed on dif-
ferent teams. On the other hand, as a Leading Indicator, Throughput
Analysis trends provide an indicator of where the demand will be in the
near future, but it does not give the reasons why particular demands
have impact in a system.

� Cycle Time and Lead Time (see 3.3.4).

The metrics provide an increased visibility throughout the organization
about how they are working and the progress they are making.

3.4 Conclusion: Things to avoid

Some times there is confusion between measuring to deliver value (the objec-
tive of the Agile world) and data-gathering to document or justify the Agile
approach in the wider world of methodologies. Di�erent authors across the
bibliography agree on tracking the Scrum Team as a whole and its context,
rather than focusing on the individuals. A couple of examples of metrics that
teams or management should avoid are Story Points per developer per time
interval, or number of certi�ed team members.

Also it is important to set that the metrics should never be used to blame
individuals, �rstly because in Scrum the entire team is responsible for the
results of a project, and secondly this behavior may have negative conse-
quences such as undermining the team's con�dence to innovate, or diminish
its transparency to the managers.

34

Chapter 4

Metrics Selection

In Chapter 3, a large list of metrics used by Scrum teams was shown along
with a variety of points of view (i.e. business, performance, quality), was
established. In this chapter, information related to metrics in Scrum envi-
ronments will be shown, that have been gathered from di�erent surveys, one
carried out by the company VersionOne and the other carried out as part of
the current thesis. The information will help in the reduction of the scope of
the metrics that can be measured by Scrum teams and provide them better
actionable information.

4.1 Supporting metrics selection

In order to support the election of metrics to be measured by the software
tool which will be developed, the following data from the 11th annual State
of Agile survey [54] were taken into account.

35

Metrics Selection

Figure 4.1: How success is measured with Agile Initiatives. Source: [54]

36

4.1. Supporting metrics selection

Figure 4.2: How success is measured with Agile Projects. Source: [54]

37

Metrics Selection

From the graphs in �gures 4.1 and 4.2 it is visible that there exist two
di�erent levels of measurement of success on Agile, and each of them has dif-
ferent goals. One is at an Initiative level, which is more related to managerial
positions in the hierarchy of an organization. In this level, di�erent managers
(i.e. business, portfolio, project) want to deliver the product within a de-
�ned budget and time, and also have happy customers who are more likely
to promote the product. For these reasons, the top �ve metrics used by
the management to measure how well an Agile Initiative is performing are
on-time delivery, business value, customer/user satisfaction, product quality
and product scope.

On the other hand, the main purpose of a team practicing Scrum is to
deliver what their customers consider the most valuable functionalities, and
they want to do this frequently in order to adapt quickly to any possible
change. In this case, teams' top �ve metrics are velocity, iteration burn-
down, release burn-down, planned vs actual stories per iteration, burn-up
chart, which allow them to see how they are performing during a project.

4.2 Survey

In order to corroborate and expand the information exposed in Section 4.1,
a survey was carried out. In the following subsections the survey will be
detailed starting from the questions asked, continuing with where was it
published, and �nally depicting the results obtained.

4.2.1 Questions

Following is a list with the questions asked in the survey and their purpose:

� Question 1: Do the teams in your organization use Scrum?

The respondents were able to choose one out of the following three
options:

1. Yes, all of them.

2. Some of them.

3. No, none of them.

The purpose of this question was to corroborate whether or not the
respondents were familiar with Scrum and its practices.

38

4.2. Survey

� Question 2: What metrics do you use in your organization?

The respondents were allowed to choose more than one of the following
options:

� Velocity

� Iteration burn-down

� Release burn-down

� Lead Time

� Cycle Time

� Cumulative Flow Diagram (CFD)

� Net Promoter Score (NPS)

� Internal Rate of Return (IRR)

� Return of Investment (ROI)

� Throughput

� Quality metrics

� Other/s

� None

The above-mentioned options have basis on the analysis done on Chap-
ter 3, and which comprise di�erent aspects such as work-capacity, work-
�ow, business, and quality.

The purpose of this question was to have insight about which metrics
are usually used within Scrum teams, regardless the level in which they
are measured.

� Question 3: What metrics do you think are useful?

This question had the same options than Q2 (except for the last one,
None), and it also allowed the respondents answer to it by choosing
more than one option.

This question has a purpose to check if the metrics that are being
measured in Q2 are really useful, or which ones the respondents think
should be measured in a Scrum environment.

39

Metrics Selection

� Question 4: Which metrics do you think are left in the previous
questions?

In this open question the respondents were allowed to give their point
of view about metrics that were not taken into account in the current
survey.

It is important to remark that none of the questions were mandatory,
and even then only one (1) out of the seventy-four (74) answers obtained was
completely empty.

4.2.2 Making it public

This survey had as target audience people with a pro�le related with Scrum,
its practices and philosophy. In order to obtain answers from people with
certain knowledge about Scrum topic, a link 1 to the survey was posted on
the following Scrum forums:

� The LinkedIn group �Agile and Lean Software Development�: https:
//www.linkedin.com/groups/37631/37631-6278613219368009728

� The LinkedIn group �Agilidad y Calidad en el Software y los Sistemas de
Información (CSSI)�: https://www.linkedin.com/groups/2977088/
2977088-6278615618174357505

� The Tuleap developers forum and its Slack channel: https://tuleap.
net/plugins/forumml/message.php?group_id=101&topic=38994&list=

1, https://tuleap.slack.com/archives/C4A086HEY/p1496996487659469

� The Slack channel of the LinkedIn group �Agile Clinic � Best Practices
For Agile Change�: https://hands-onagile.slack.com/archives/

C2PUGTWRJ/p1496938300659933

In some of the above-mentioned forums, the survey served as a debate
initiator where di�erent techniques for measurement, types of metrics, among
other topics were discussed.

1https://goo.gl/forms/bnGKOD6sepHKQj4A2

40

https://www.linkedin.com/groups/37631/37631-6278613219368009728
https://www.linkedin.com/groups/37631/37631-6278613219368009728
https://www.linkedin.com/groups/2977088/2977088-6278615618174357505
https://www.linkedin.com/groups/2977088/2977088-6278615618174357505
https://tuleap.net/plugins/forumml/message.php?group_id=101&topic=38994&list=1
https://tuleap.net/plugins/forumml/message.php?group_id=101&topic=38994&list=1
https://tuleap.net/plugins/forumml/message.php?group_id=101&topic=38994&list=1
https://tuleap.slack.com/archives/C4A086HEY/p1496996487659469
https://hands-onagile.slack.com/archives/C2PUGTWRJ/p1496938300659933
https://hands-onagile.slack.com/archives/C2PUGTWRJ/p1496938300659933
https://goo.gl/forms/bnGKOD6sepHKQj4A2

4.2. Survey

4.2.3 Results

In this section the results for the above-mentioned questions are presented.
Because of the freedom that the respondents had to choose to answer any of
the four questions asked, the number of answers can vary from one question
to another.

The charts (�gures 4.3, 4.4, and 4.5) that represent the results obtained
in the survey, and which were automatically generated by the Google Forms
platform (with exception of Q4 which was an open question), are shown
below.

Figure 4.3: Results obtained for Question 1.

Here it is possible to see that the big majority (93.2%) of the respondents
were members of organizations where Scrum is practiced by at least one
team within them. And only 6.8% of the respondents' organizations did not
have any team practicing Scrum, but this does not mean that they were
not following other type of Agile practices. This helps to con�rm that the
targeted respondents' pro�le was reached.

41

Metrics Selection

Figure 4.4: Results obtained for Question 2.

Figure 4.5: Results obtained for Question 3.

42

4.2. Survey

The results obtained in Q2 (�gure 4.4) and Q3 (�gure 4.5) are shown
together in the following table to better understand them:

Option Q2 % Q3 % % Di�erence
Velocity 60.3 52.8 ↓ 7.5
Iteration burn-down 45.2 40.3 ↓ 4.9
Release burn-down 50.7 44.4 ↓ 6.3
Lead time 21.9 40.3 ↑ 18.4
Cycle Time 37 47.2 ↑ 10.2
Cumulative Flow Diagram (CFD) 27.4 27.8 ↑ 0.4
Net Promoter Score (NPS) 23.3 29.2 ↑ 5.9
Internal Rate of Return (IRR) 4.1 12.5 ↑ 8.4
Return of Investment (ROI) 24.7 34.7 ↑ 10
Throughput 27.4 34.7 ↑ 7.3
Quality metrics 31.5 50 ↑ 18.5
Other/s 16.4 19.4 ↑ 3
None 8.2 - -

Table 4.1: Percentages of answers in questions Q2 and Q3 of the survey.

The table 4.1 shown above helps to visualize that there is a decrease in
percentage regarding the three most used metrics (velocity, iteration burn-
down, and release burn-down) and what the respondents think about their
usefulness, despite these metrics being very relevant. Also it is possible to
see that there are metrics which the respondents think are useful, such as
lead time, cycle time, and quality metrics, but their implementation is not
too much spread across Scrum Teams. This situation can be due to di�erent
situations such as metrics are imposed by the management, teams provide
metrics that make management �happy�, among others.

In the following table 4.2 the answers obtained in Q4 are shown, where
either new or di�erent metrics to the ones given in the options of Q2 and
Q3 were proposed. The full list of answers can be found in the Appendix A.

43

Metrics Selection

Answers
Business Value Delivered
Scope change
Deployment rate, business value delivered, employee satisfaction
Developers satisfaction
Happiness score
Sprint speed metric
E-NPS (Employee NPS), win/loss rate of iterations. acceleration, percent-
age of forecast done, escaped defects, �nancial metrics, sustainability, value
stream analysis
Relative business value estimated, relative business value delivered
User value received, development org value received
On scope, automation coverage, code coverage
Team Happiness index, Customer satisfaction
Team Satisfaction, how many bugs. Division of type of work
Frequency of deploying new functionality to the customer
Value outcome
Customer satisfaction, number of users, employee satisfaction
Velocity deviation

Table 4.2: Answers obtained in question Q4 of the survey.

From the table 4.2 it is possible to distinguish that the most repeated
metric is related to team's satisfaction/happiness, this is an important metric
because happier people are 12% more productive according to Oswald et
al. [47]. Some Scrum practitioners recommend to ask team members during
the Sprint Retrospectives 2 how happy they feel on a scale from one (1) to �ve
(5). Another technique is the niko-niko calendar 3 [57] where in a calendar
that is visible for all the team members, they draw day by day a face which
represents how a person felt that day. Nevertheless, while this require a high
level of openness and trust among team members, this can be di�cult to
achieve even in teams that have a good performance practicing Scrum.

Moreover, other metrics proposed by the respondents were related to the
value delivered to the business and customers, and quality metrics such as

2https://web.archive.org/web/20140721134516/http://scrum.

jeffsutherland.com:80/2010/11/happiness-metric-wave-of-future.html
3https://www.agilealliance.org/glossary/nikoniko/

44

https://web.archive.org/web/20140721134516/http://scrum.jeffsutherland.com:80/2010/11/happiness-metric-wave-of-future.html
https://web.archive.org/web/20140721134516/http://scrum.jeffsutherland.com:80/2010/11/happiness-metric-wave-of-future.html
https://www.agilealliance.org/glossary/nikoniko/

4.3. Conclusion: Selected metrics

number of bugs that escape into production, automation or code coverage,
or frequency of deployment.

The answers obtained in Q4 were insightful to expand the spectrum of
metrics, regardless if they can be implemented or not through a software
tool.

4.3 Conclusion: Selected metrics

According to Davies [14], it is important that developers, product owners, and
project managers understand why a metric is measured, what it is measuring,
and how it is collected. This is important because they have di�erent points
of view of the same product/project, but the metrics tell how the team is
performing as a whole, not individuals.

With the information collected from the survey carried out and the in-
formation obtained from the annual State of Agile survey, we may conclude
that the following important metrics should be measured in a Scrum Team:

� Velocity: this implies the velocity that is forecast for a Sprint, the
team's committed work and the real velocity, this is the work completed
(�Done Done�) and accepted by the Product Owner. These values will
provide information regarding the team's pace, which can be used to
forecast how many Sprints will be needed to deliver a certain amount of
functionality to the customers. Also, the variability of team's velocity
can be an alert that something is happening within a team.

� Iteration burn-down and Release burn-down: these metrics were
depicted on Secction 3.3.1. They help Scrum Teams to visualize how far
they are from the goal that they established for that Sprint or Release.

� Lead Time andCycle Time: a description of this metrics can be seen
on Section 3.3.4. They indicate whether or not there is a bottleneck in
the work�ow implemented by a team.

� Throughput: this is how many functionality was delivered in a period
of time (e.g. User Stories per week). This metric helps to understand
the team's behavior, for example, if a team delivers regularly function-
ality or it does one big delivering near the end of the Sprint/Release.

45

Metrics Selection

� Type of work committed: this metric helps teams to visualize how
much e�ort a team dedicates to deliver value to the customer, and how
much is dedicated to �x problems. If a team dedicates most of the e�ort
of Sprints on �xing bugs rather than producing new features, this may
mean that the team is generating too much technical debt, or that the
testing is de�cient, among others.

These metrics have as purpose to help Scrum Teams to detect quickly
when processes or practices are having unwanted behaviors.

46

Chapter 5

Implementation

So far, the activities Scrum Teams have to carry out according to the Scrum
Guide (Section 2.2), and the metrics to measure di�erent aspects of the
software development where Scrum practices are adopted (Chapter 3) have
been studied.

In the following sections of the current chapter, an analysis of available
tools not only for management of software projects but also for their measure-
ment will be provided. Further, a description of the tool chosen as result of
the analysis, as well as a description of the solution implemented to produce
useful metrics will be presented. The aim of the analysis and the solution
implemented is to establish and provide Scrum Teams with a suitable work-
ing environment where most of the execution and tracking of the activities
can be carried out.

5.1 Analysis of Tools

In the current section, tools for managing software throughout its life cycle,
as well as tools for measuring a variety of variables and parameters related
to Agile or Scrum in a project, will be shown.

5.1.1 Application Life-cycle Management Tools

Before obtaining any metric, it is important to establish the software tool
that will be the source of information for the application provider of metrics.
In order to select the appropriate tool, an analysis focused on the available

47

Implementation

software for Agile project management was carried out.
The �rst aspect analyzed was the type of license on the source code of

the software. It is possible to di�erentiate between open source and propri-
etary software. The software belonging to the �rst group gives to users the
possibility to adapt the software to their needs by adding functionalities or
modifying the behavior of the software. While the second provides software
to which the user must adapt.

The table 5.1 shows the di�erent software separated in the before-mentioned
groups.

Open Source Proprietary

� Agilo for Trac,

� MY Collab,

� OpenProject,

� OrangeScrum,

� Phabricator,

� Taiga,

� Tuleap

� Asana,

� Axosoft,

� CA Agile Central,

� FogBugz,

� IceScrum,

� Jira,

� Kanbantool,

� LeanKit,

� Mingle,

� Planbox,

� PivotalTracker,

� SwiftALM,

� VersionOne

Table 5.1: Open source and proprietary tools for Agile project management.

From this �rst stage of the analysis, it has been decided that the tool

48

5.1. Analysis of Tools

must be an open source one. In this way, the organizations that want to
start using a tool for their teams using the Scrum framework, do not have to
spend a lot of money buying licenses or paying a subscription fee for using
software. Following open source tools for project management are brie�y
depicted:

� OpenProject 1: a collaborative, web-based project management soft-
ware written in Ruby.

�]project-open[2: a web-based project and service management tool
with focus on �nance and collaboration. Its last stable version is the
4.0 from 2013, even though the software has a version 5.0 that is in
development currently.

� Trac 3: an enhanced wiki and issue tracking system for software de-
velopment projects. There exist a tool based on Trac that is called
Agilo for trac 4, which supports the agile Scrum software development
process. Both tools, Trac and Agilo for trac, are written in Python.

� MY Collab 5: a collaboration platform management that provides
a comprehensive set features of Project Management, Customer Rela-
tionship Management (CRM), and Document Management. The main
programming language of this tool is Java.

� OrangeScrum 6: a project management and collaboration suite that
provides a centralized management for projects and tasks, collaborative
resources, tracking of time and generation of invoices, visualization of
real-time analytics. The tool has its basis on the PHP programming
language.

� Taiga 7: a project management platform for agile developers, designers,
and project managers.

1https://www.openproject.org/
2http://www.project-open.com/
3https://trac.edgewall.org/
4http://www.agilofortrac.com/
5https://www.mycollab.com/
6https://www.orangescrum.org/
7https://taiga.io/

49

https://www.openproject.org/
http://www.project-open.com/
https://trac.edgewall.org/
http://www.agilofortrac.com/
https://www.mycollab.com/
https://www.orangescrum.org/
https://taiga.io/

Implementation

� Tuleap 8: a platform for Agile management and software development.

The second aspect taken into account to make a decision about the tool
was the frequency of actualization of the tools, but almost all of them had
their last versions released the current year, having a pace of releasing a new
version every one or two months. Even the pace of actualization of the tools
was not very helpful to make a decision, it is a good and healthy sign that
the tools have the support of the companies behind them, but also of the
communities supporting the software.

Because the purpose of the tool to be selected is not only to provide the
data to the software to be developed but also to be integrated with other
tools, the third aspect taken into account was the integration that the tools
had with Mylyn. Mylyn 9 is a framework for Eclipse that realigns the Inte-
grated development environment (IDE) around tasks through a task-focused
interface. It provides a task management tool for developers which can be
easily integrated with a wide range of Application Life-cycle Management
(ALM) software. The tool gives to developers the information they need to
accomplish their work and update the status of their tasks within the IDE,
reducing the changes of context produced while switching between applica-
tions and which have as consequence a decrease in productivity.

From the above-listed tools, the only two that have a plugin for Mylyn are
Tuleap and Trac. Tuleap (see Section 5.2) is the tool chosen between these
two options because it integrates more functionalities since the very beginning
and the possibility to extend them via plugins, instead Trac provides a basic
functionality which can be extended through a series of plugins.

5.1.2 Measurement Tools

Most of the tools mentioned above (Section 5.1.1) provide a dashboard where
teams can visualize the status of the di�erent tasks they are executing, but
only few of them o�er a set of metrics, which is often not too deep. Following
software developed with the goal of measure aspects such as team perfor-
mance, Agile adoption, or the adherence of a team to Scrum standards, will
be depicted.

ActionableAgileTM Analytics 10 is a tool that reveals the e�ciency of

8https://www.tuleap.org/
9http://www.eclipse.org/mylyn/
10https://www.actionableagile.com/

50

https://www.tuleap.org/
http://www.eclipse.org/mylyn/
https://www.actionableagile.com/

5.1. Analysis of Tools

a Lean or Agile process and provides insights for determining what process
tweaks can be made to improve these processes.

Figure 5.1: Example of a chart provided by the ActionableAgile Analytics
tool. Source: https://www.actionableagile.com/analytics-demo/

AgilityHealth 11 is a platform that allows teams and companies to visu-
alize, through di�erent charts called radars, the performance and health of
the Agile implementation across multiple teams and organization.

11https://agilityhealthradar.com/

51

https://www.actionableagile.com/analytics-demo/
https://agilityhealthradar.com/

Implementation

Figure 5.2: Example of an AgilityHealth radar. Source: https://

agilityhealthradar.com/team-health-radar-assessment/

ScrumLint 12 [39] is a tool that analyzes development artifacts in order
to provide process metrics. These metrics contain the core ideas of agile
methods and report deviations, which gives development teams immediate
feedback on their executed development practices. This information can be
used to improve their work�ows.

12https://github.com/chrisma/ScrumLint

52

https://agilityhealthradar.com/team-health-radar-assessment/
https://agilityhealthradar.com/team-health-radar-assessment/
https://github.com/chrisma/ScrumLint

5.1. Analysis of Tools

Figure 5.3: Screenshot of ScrumLint. Source: [39]

As can be observed, the o�er of open source software for metrics obtain-
ment is far from being well developed as the o�er of ALM tools.

Another aspect the Scrum Teams should care about, and which was
pointed out in the results of the survey carried out (see Section 4.2.3), is
the quality of the software they are developing. For this task there exist a
widely used open source tool denominated SonarQube 13. It is a platform
that provides continuous inspection of code quality that shows the health of
an application regarding characteristics of the code such as quality, security,
bad smells, and consistency with the language.

13https://www.sonarqube.org/

53

https://www.sonarqube.org/

Implementation

Figure 5.4: Example of a SonarQube dashboard. Source:https://www.

sonarqube.org/

5.2 Tuleap

Tuleap is a 100% libre and open source tool, and it is sponsored and devel-
oped by Enalean, a French company. The company behind the tool has what
they call Enalean's Open Roadmap 14 in which every month they deploy a
new version of the software based on user's feedback and customer's needs,
this keeps Tuleap continuously evolving. The system can be used by organi-
zations of all sizes from small to large, and from a wide range of industries,
some examples are Eclipse Foundation, OW2 Consortium, Airbus Group,
OrangeTM, JTEKT Corporation, Portuguese Public Institute, among others.

The software provides an environment where most of the needs for a
software project are covered, and where all the people involved (i.e. Scrum
Masters, Product Owners, Team Developers, Stakeholders) can meet. With
Tuleap, it is possible to create customized dashboards (see Figure 5.5) for
any type of team, no matter the life-cycle they use (i.e. Waterfall, Scrum,
or Kanban) nor the process they follow. One of the main characteristics
of Tuleap is its high degree of adaptability. With this software, teams can
track any type of item (see Figure 5.6) such as requirements, tasks, bugs,

14https://blog.enalean.com/enalean-open-roadmap-how-it-works/

54

https://www.sonarqube.org/
https://www.sonarqube.org/
https://blog.enalean.com/enalean-open-roadmap-how-it-works/

5.2. Tuleap

documents, among others, as well as customize any of these trackers or create
new ones.

Figure 5.5: Scrum dashboard in Tuleap.

Figure 5.6: Trackers for a Scrum project in Tuleap.

55

Implementation

Another interesting characteristic of Tuleap is the integration with dif-
ferent tools that it provides through either a Simple Object Access Proto-
col (SOAP) Application Programming Interface (API) or a Representational
State Transfer (REST) API, this openness helps to cover all the aspects on
a software development life-cycle. For version control system Git or Apache
Subversion (SVN) can be selected, with an unlimited number of repositories
per project. Before a series of changes are pushed to the code repository they
should be tested on a continuous integration (CI) tool, in this case Tuleap
can connect with Jenkins. Through another tool called Gerrit, Tuleap also
gives teams the possibility to review the code that is going to be added or
modi�ed in the code repository, allowing them to discuss about changes and
share knowledge about the project.

Moreover, Tuleap can interact with Mylyn (see Figure 5.7) through the
Tuleap Mylyn and Agile planner connector 15, which enables Development
Team members to create and edit artifacts (i.e. tasks, bugs, support re-
quests), and synchronize them with the Tuleap server.

Figure 5.7: Mylyn showing tasks retrieved from a Tuleap server.

15https://marketplace.eclipse.org/content/tuleap-mylyn-and-agile-planner-connector

56

https://marketplace.eclipse.org/content/tuleap-mylyn-and-agile-planner-connector

5.3. Solution

5.3 Solution

Tuleap o�ers release and iteration burn-down metrics, which is a good way
to track the progress of a team against release or sprint deadline but is not
enough to have a clear view of how well a team is performing, where the
impediments are, or why they appear.

The aim of the solution developed is to expand the functionalities of
Tuleap with an application that provides a set of useful metrics (see Chap-
ter 4) for Scrum Teams. The source code of the application has been released
under the GNU General Public License v3.0, and it is available online on the
GitHub platform at https://github.com/El-Flaco/ScrumMetrics.

In the current section, the architecture (i.e. technology and structure)
of the application developed will be depicted, followed by an explanation of
how the metrics are obtained, and �nally the results of the implementation
will be shown.

5.3.1 Architecture

The technological stack of the application is compounded by :

� Client-side:

� HyperText Markup Language (HTML) & Cascading Style
Sheets (CSS): the �rst term refers to the markup language that
allows the creation of web pages rich in text, images, videos, etc;
while CSS is the language that describes the style of an HTML
documents and how the elements of the web page will be displayed.
The use of both technologies permits to provide to the users a
responsive interface through any web browser, this is important
to keep a consistent user experience across di�erent devices (e.g.
desktop, laptop, mobile).

� JavaScript (JS): it is an interpreted programming language that
allows to create dynamic web pages. Using this technology it
is possible to interact with the web page through the Document
Object Model (DOM), which gives developers the possibility to do
things like catching the user's interactions within the application
and respond according them, modify any part of the web page
when a condition is reached, among others.

57

https://github.com/El-Flaco/ScrumMetrics

Implementation

� Asynchronous JavaScript And XML (AJAX): it is a web
development technique to build Rich Internet Applications (RIA).
This the technology makes possible keep asynchronous commu-
nications with the server while the users interact with the web
application. AJAX accesses to the data retrieved by the server
through an object available on all the current web-browsers called
XMLHttpRequest. This object can be easily manipulated using
JavaScript code.

� Server-side:

� PHP: this is the technology in which the application relies on,
and which allows the interaction with the Tuleap server in order
to obtain data, process it and generate the metrics.

In the following section, the structure used to separate the code will be
explained:

� Classes: here it is possible to �nd PHP classes created in order to cover
di�erent needs. The classes contained in this folder are the TuleapUser
class which manages the user's connection with the Tuleap server, the
CurlManager class that manages the interaction with the REST API
provided by the Tuleap server, and a iFileManager interface with a
set of methods that any class implementing it must have, as well as a
JsonFileManager class which implements this interface to manage the
operations over JSON �les.

� Drawers: this folder contains the PHP �les where the data retrieved
by the Tuleap server is processed and utilized to generate charts repre-
senting the metrics obtained (e.g. drawArtifactsByType.php, drawVe-
locity.php). Moreover, the Topnew SVG Chart 16 (i.e. cms_chart.php),
the �le which allows to generate Scalable Vector Graphics (SVG) charts
that can be embedded to a web page, is placed here.

� Functions: the �les present in this folder accomplish speci�c func-
tions such as interact with the REST API of the Tuleap server (e.g.
getProjects.php, getArtifactInformation.php), or perform calculations
using the data provided by the interactors (e.g. calculateVelocity.php,
LeadTimeCalculator.php).

16http://topnew.net/chart/

58

http://topnew.net/chart/

5.3. Solution

� Site: this is where the client-side part of the application relies. It
is possible to �nd the three (3) main user interfaces (i.e. home.html,
login.html, and project.html), as well as the following folders:

� css: this folder contains the CSS �les that give the Look and Feel
to the application.

� js: here it is possible to �nd the JS �les that manage the user's
interaction with the web page, and where the AJAX calls to the
server are carried out.

� php: in this folder are present PHP �les that manage the user's
session (e.g. login.php, logout.php), as well as the ones that man-
age the AJAX calls from the clients.

5.3.2 Interaction with the Tuleap REST API

The application needs a source from where to collect data that will be used
in the calculus of di�erent metrics. Tuleap provides a REST API that makes
it possible to interact and this allows developers to gather data that after
being processed can provide useful information. This API 17 can be accessed
anonymously or with authentication (this will depend on the con�guration of
the projects) through the following Uniform Resource Locator (URL, collo-
quially called web address) https://<tuleap-host-name>/api/. The Hy-
pertext Transfer Protocol (HTTP) request methods available to interact with
the API are:

� POST: this method submits data to be processed to a speci�ed re-
source. There is no restriction neither in the type nor the length of the
data that can be send to the server. The data sent is not displayed in
the URL, nor stored either the web browser history or the web server
log, which gives the method a layer of security.

� GET: method used to request data from a speci�ed resource. Here the
data is sent as part of the URL, which makes the method restricted on
the lenght of the URL to 2048 characters, and also to be less secure
than POST because the data is visible to everyone in the URL.

17http://tuleap-documentation.readthedocs.io/en/latest/user-guide/rest.

html

59

https://<tuleap-host-name>/api/
http://tuleap-documentation.readthedocs.io/en/latest/user-guide/rest.html
http://tuleap-documentation.readthedocs.io/en/latest/user-guide/rest.html

Implementation

� DELETE: when this method is called, it deletes an speci�ed resource.

� PUT: with this method it is possible to create and store an entity on
the server. When the entity already exists on the server, it does not
create a new entity, but update its information.

� PATCH: this method is used to update partial resources. While with
PUT method is necessary to send to the server the whole representation
of a resource to update its information, with PATCH method it is
possible to update a speci�c �eld of the resource, saving bandwith in
consequence.

The API gives access to: projects, tokens, user_groups, users, phpwiki,
jwt, system_event, git, trackers, artifacts, artifact_�les, trackers_reports,
milestones, plannings, backlog_items, kanban, cards, gerrit, svn. The appli-
cation interacts with the following elements of the API:

� tokens: the TuleapUser.class.php makes a POST request to the https:
//<tuleap-host-name>/api/tokens URL when the user logs in into
the application, in order to obtain a token that allows him/her to inter-
act with the API. Also a DELETE call to https://<tuleap-host-name>
/api/tokens/{tokenID} is made whit the identi�cation (ID) of the to-
ken, when the user logs out the application, in order to delete the token
generated during the login.

� projects: the getProjects function calls with the GET method to
https://<tuleap-host-name>/api/projects in order to obtain the
projects which the authenticated user has granted access. Having the
ID of a project, it is possible to obtain its plannings through the get-
Plannings function, which makes a GET call to https://<tuleap-host-name>
/api/projects/{projectID}/plannings in order to get the ID of the
planned entities (i.e. Releases or Sprints plannings).

� plannings: with the ID of a planning, information about its milestones
(i.e. Releases, Sprints) can be gathered through the getMilestones func-
tion This function makes a GET request to https://<tuleap-host-name>
/api/plannings/{planningID}/milestones and as result it gives a
list with the IDs of the milestones related to that planning entity.

� milestones: the function getMilestoneInformation retrieves informa-
tion about a speci�c milestone, which is identi�ed by its ID, such as

60

https://<tuleap-host-name>/api/tokens
https://<tuleap-host-name>/api/tokens
https://<tuleap-host-name>/api/tokens/{tokenID}
https://<tuleap-host-name>/api/tokens/{tokenID}
https://<tuleap-host-name>/api/projects
https://<tuleap-host-name>/api/projects/{projectID}/plannings
https://<tuleap-host-name>/api/projects/{projectID}/plannings
https://<tuleap-host-name>/api/plannings/{planningID}/milestones
https://<tuleap-host-name>/api/plannings/{planningID}/milestones

5.3. Solution

its capacity (in Story Points) and status (e.g. Open, Closed). To
make this possible, the function makes a GET request to https://

<tuleap-host-name>/api/milestones/{milestoneID}.
Also it is possible to obtain data of the artifacts (i.e. User Stories,
Bugs) that are part of a milestone, this can be done through the get-
MilestoneContent function which makes a GET request to https://

<tuleap-host-name>/api/milestones/{milestoneID}/content. The
information regarding to the artifact includes its ID, its type and status,
and the e�ort (in Story Points) required to accomplish that artifact.
The function provides all the before-mentioned information of all the
artifacts belonging to a milestone.

Figure 5.8: Tuleap API explorer screenshot.

� artifacts: the getArtifactInformation function, which makes a GET
call to https://<tuleap-host-name>/api/artifacts/{artifactID},
retrieves the status, date of creation, and the date of last modi�cation
of an artifact.
Moreover, it is possible to obtain the historical status changes (e.g.
from Todo to On Going) ocurred to user stories and bugs through the
getUserStoryStatusChangesets and getBugStatusChangesets functions.

61

https://<tuleap-host-name>/api/milestones/{milestoneID}
https://<tuleap-host-name>/api/milestones/{milestoneID}
https://<tuleap-host-name>/api/milestones/{milestoneID}/content
https://<tuleap-host-name>/api/milestones/{milestoneID}/content
https://<tuleap-host-name>/api/artifacts/{artifactID}

Implementation

Both functions make a GET call to https://<tuleap-host-name>

/api/artifacts/{artifactID}/changesets, which retrieves informa-
tion about the status of the artifact and the date in which this changes
happened.

All the above-mentioned interactions with the Tuleap API are part of a
chain that makes it possible to calculate helpful metrics.

The main purpose of the application is to provide Scrum Teams with the
metrics they need, in the moment they ask for them. For this reason the
application does not store data in a data base (DB), but it processes the
users request and calculates the metrics each time they are requested.

5.3.3 Result

Scrum Teams must have a way to share and radiate information among the
members of the team, as well as people outside of it. For this reason, the
application has implemented a web interface in which users can request for
a set of metrics. Di�erent interfaces of the application are shown as follows.

The �rst interface that a user sees is shown in the Figure 5.9, this is nec-
essary in order to obtain the user's token that will allow his/her interaction
with the Tuleap API.

Figure 5.9: Login to meTricks plugin.

62

https://<tuleap-host-name>/api/artifacts/{artifactID}/changesets
https://<tuleap-host-name>/api/artifacts/{artifactID}/changesets

5.3. Solution

Once the user is logged in, as it is possible to observe in Figure 5.10, a
list of projects (either public or where he/she is member) is shown. This
gives to the user the possibility to choose from which project he/she wants
to retrieve the metrics.

Figure 5.10: Project selection screen.

After selecting the project, the user can request for any metric from the
list, i.e. Velocity, Artifacts by Type, Sprints Lead Time, Artifacts Lead Time,
Artifacts Cycle Time (see Section 4.3 for more details), and after a calculation
which takes few milliseconds the chart corresponding to the metric will be
shown. Below, examples of the metrics that an user can obtain are presented:

63

Implementation

Figure 5.11: Example of Velocity metrics.

Figure 5.12: Example of Artifacts by Type.

64

5.3. Solution

Figure 5.13: Example of Sprints Lead Time.

Figure 5.14: Example of Artifacts Lead Time.

65

Implementation

5.4 Conclusion: Working Environment

After analyzing the available ALM tools, a working environment was pro-
posed. It consists of Tuleap, a tool that allows software teams (whether o
not using Agile methodologies) to have control over all the aspects involv-
ing software life cycle (e.g. features to be developed, hosting and control of
the source code), as well as meTricks, an application to provide teams with
metrics that will help them to improve their performance. It is important
to remark that since both the tools are free and open source, these charac-
teristics make it possible that the tools adapt to the teams' processes and
practices and not the other way round, and also prevent an organization from
having to invest a signi�cant sum of money.

A schema summarizing the resulting system is shown in Figure 5.15.

Figure 5.15: Architecture of the working environment.
(1) The user requests a metric via web browser.
(2) On the server, meTricks interacts with Tuleap through its REST API.
(3) Tuleap provides the information stored in its data base.
(4) meTricks process the data gathered and sends the results to the user.
(5) A chart representing the metrics obtained is shown.

66

Chapter 6

Conclusions

This thesis presents the resources needed to set a working environment for
Scrum Teams where it is easy for them to track and measure its progress over
a project life cycle. To achieve this the core concepts of Agile and Scrum
were explained, the metrics used by teams that have adopted Agile practices
were analyzed and described, as well as an analysis of the available tools for
life cycle project management was carried out. These analysis were the basis
to develop an application that gathers the metrics from a server and shows
the results to the users. In order to support the metrics that are shown by
the application a survey was carried out.

The current chapter presents the conclusions of the work developed. First,
the main points of the work done are reviewed and thereafter the possibilities
for future work are addressed.

6.1 Contribution

In this work the Agile concepts were presented along with Scrum which is
one of the frameworks that implements these concepts. Although Agile does
not ensure success to organizations, it provides them with the necessary
ideas to transform them into organizations well prepared to face changes
that may occur immediately or in the near future. This gives organizations
a big competitive advantage, because they are neither attached to a business
model, nor a technology, or a speci�c group of clients.

Scrum is the most used framework to adopt the Agile concepts due to
its maturity (it was born in 1993). The creators of this framework update a

67

Conclusions

guide regularly (the last version is from June, 2016) where the roles, events,
artifacts, and rules of Scrum are established and depicted in depth. This
provides a great background for teams that want to start the adoption of
Agile values and principles.

Also, the current work has shown that any software development team
that wants to succeed must have a de�ned measurement plan establishing
metrics that are useful for the team. These metrics should be pragmatic,
have a clear purpose, and provide useful information (i.e. information that
lead to actions). In this way the team can identify where it is failing, or
which points have margin for improvement.

A series of points that are pertinent for identifying the useful metrics were
studied, to provide the basis on which teams can rely and start measuring
their performance in di�erent aspects of the software development process.
Also, di�erent classi�cations of metrics were provided according to aspects
such as the type of variable measured to obtain the metric, the information
provided by the metric, the point in the time (i.e. past or future) that they
observe, and the purpose of their use. Furthermore, metrics strongly related
with Scrum were depicted, as well as metrics that were thought useful for
other Agile methodologies, but are still useful despite the framework adopted.
Among these metrics it is possible to �nd Velocity, Burn-down and Burn-up
charts, Lead and Cycle Time, Throughput, Quality metrics (e.g. number of
defects during development, percentage of automated test coverage), Value
metrics (e.g. ROI, NPV, IRR), and a set of ten metrics for increasing the
productivity of a team.

It is clear that the number of metrics can be overwhelming (even for expe-
rienced teams), for this reason it is recommended for teams that are initiating
with Scrum to measure only few, but insightful, attributes at the beginning,
and after some time practicing this framework to adapt the metrics to their
own process. The scope of metrics for teams that want to attempt to start
measuring themselves with the aim of improving, either practices or pro-
cesses, was reduced through the information gathered from the 11th annual
State of Agile, which inspired this work to carry out a speci�c survey about
the metrics that Scrum practitioners use and the ones that they think are
really useful (even if they use them or not). The later survey also provided
insight about metrics that were not considered during the analysis, but those
that Scrum practitioners think are needed to measure, even if they are hard
to measure or not very objective (e.g. team members' happiness).

With all the information collected, and after an analysis of the avail-

68

6.2. Future Work

able tools (open source and proprietary) for software project management,
a working environment for Scrum Teams was settled. This environment is
conformed by Tuleap, an open source ALM tool that can be integrated with
other applications which gives it the ability to cover all the team's needs in
a project (i.e. tracking artifacts and bugs, storage of documents, code repos-
itories, continuous integration, etc.), and an open source application called
meTricks was developed by this work.

The purpose of meTricks is to provide Scrum Teams with useful metrics.
To achieve this, it gathers data by making use of the REST API provided by
the Tuleap server running in the working environment, and, after processing
the collected data and making the calculations, it provides the results to the
users through a web-based interface. Among the metrics provided by the
application it is possible to �nd team's Velocity along with the commited
work and the work that have accomplished the team's de�nition of Done,
the type of work that a team is addressing (i.e. creating new features or
�xing problems), as well as the time needed to �x a bug or deliver a feature
to the customer (Lead and Cycle time). Due to the open source nature of
meTricks, it can be easily extended or modi�ed by any person interested in
doing so, giving them the chance to adapt the tool to what they need.

In summary, this work establishes the necessary concepts to allow any
person attempting to approach the ideas such as Agile or Scrum, which
go beyond mere software development and provide a friendly perspective.
Also, to those software teams or organizations that having adopted Scrum
want to start improving their performance, a free and open source working
environment was proposed. This environment has its basis in the analysis of
available metrics as well as tools.

6.2 Future Work

The following list summarizes the possible directions that can be taken in
order to give the current work a wider spectrum of application.

� Integrate the application with Tuleap. For now the application
developed can be executed in a server that supports PHP, but the aim
is that the application can be added to Tuleap as a plugin. This will
allow users to have most of the tools together in one place, reducing the
e�ect of switching between applications. To achieve this it is necessary

69

Conclusions

to adapt the architecture of the app to the architecture that Tuleap es-
tablishes for its plugins. Also it is necessary that the application should
have written a series of test cases (which must be successfully passed),
and pass a series of speci�c test cases written by Tuleap developers.
The purpose of this is that the plugin written will not produce any
critical error nor any misbehavior in the software as a whole.

� Making the application available for any other tool. The current
application is developed having in mind the interaction with a Tuleap
server. But due to the lack of free and open source tools for software
metrics, there exist space in this area to develop an application that
can interact with any ALM tool, providing them with useful metrics.

� Development of a Chatbot. From the analysis of the answers to
the question four (Q4) of the survey carried out (see Section 4.2.3), it
is possible to observe that there is a need to measure the happiness
of the team members, as well as the happiness of the customers. In
order to gather this information without disturbing neither the team
members nor the customers, a chatbot that asks either direct or indirect
questions can be implemented. This chatbot can be another source of
information for the application.

70

Appendix A

Survey Model and Answers

In this appendix, the model of the survey carried out by using the platform
provided by Google Forms, as well as all the answers obtained will be shown.

A.1 Survey Model

Following is the survey that the respondents had to answer and which has
been depicted in Chapter 4:

71

Survey Model and Answers

A.2 Survey Answers

The results obtained (see Section 4.2.3) have basis on seventy-four (74) an-
swers obtained, which are shown in the following subsections. It is necessary
to remark that given the anonymous nature of the survey, the answers have
a time-stamp as identi�er.

A.2.1 Answers to Q1

The following table shows the answers for question one (Q1):

Time-stamp Do the teams in your organization use Scrum?
08/06/2017 18.16.41 Yes, all of them
08/06/2017 19.26.33 Yes, all of them
08/06/2017 19.56.53 Some of them
08/06/2017 20.42.09 No, none of them
08/06/2017 20.47.50 Some of them
08/06/2017 21.34.50 Some of them
08/06/2017 22.20.22 No, none of them
09/06/2017 0.39.09 Some of them
09/06/2017 1.37.25 Some of them
09/06/2017 2.52.04 Yes, all of them
09/06/2017 8.06.45 Some of them
09/06/2017 8.21.32 No, none of them
09/06/2017 8.49.30 Some of them
09/06/2017 8.59.37 Some of them
09/06/2017 9.51.59 Yes, all of them
09/06/2017 10.02.04 Yes, all of them
09/06/2017 10.13.11 Yes, all of them
09/06/2017 23.54.29 Yes, all of them
10/06/2017 3.16.25 Some of them
10/06/2017 4.13.06 Yes, all of them
10/06/2017 12.24.04 Some of them
10/06/2017 13.30.18 Yes, all of them
10/06/2017 13.32.39 Some of them
10/06/2017 13.53.39 Some of them
10/06/2017 13.53.48 Some of them

Continued on next page

74

A.2. Survey Answers

Table A.1 � Continued from previous page
Time-stamp Do the teams in your organization use Scrum?
10/06/2017 14.29.04 Some of them
10/06/2017 15.07.49 Yes, all of them
10/06/2017 15.15.51 Yes, all of them
210/06/2017 15.46.29 Yes, all of them
10/06/2017 16.23.49 Yes, all of them
10/06/2017 16.38.21 Yes, all of them
10/06/2017 17.29.06 Yes, all of them
10/06/2017 17.57.01 Some of them
10/06/2017 18.15.14 Yes, all of them
10/06/2017 18.37.40 Yes, all of them
10/06/2017 18.47.24 Some of them
10/06/2017 19.36.21 Some of them
10/06/2017 20.02.20 Some of them
10/06/2017 20.03.24 Some of them
10/06/2017 20.07.33 Yes, all of them
10/06/2017 20.23.10 Some of them
10/06/2017 20.36.03 Yes, all of them
10/06/2017 20.40.31 Some of them
10/06/2017 21.19.03 No, none of them
10/06/2017 21.23.27 Some of them
10/06/2017 21.32.29 Some of them
10/06/2017 23.48.16 Yes, all of them
11/06/2017 0.35.29 Yes, all of them
11/06/2017 1.27.07 Some of them
11/06/2017 3.26.54 Yes, all of them
11/06/2017 6.26.53 Some of them
11/06/2017 8.14.38 Some of them
11/06/2017 8.54.24 Some of them
11/06/2017 10.26.23 Some of them
11/06/2017 10.50.29 Some of them
11/06/2017 13.09.47 No, none of them
11/06/2017 13.38.33 Some of them
11/06/2017 13.55.06
11/06/2017 14.56.49 Some of them

Continued on next page

75

Survey Model and Answers

Table A.1 � Continued from previous page
Time-stamp Do the teams in your organization use Scrum?
11/06/2017 17.12.20 Yes, all of them
11/06/2017 20.30.08 Yes, all of them
11/06/2017 21.26.02 Some of them
12/06/2017 1.03.09 Yes, all of them
12/06/2017 8.52.34 Some of them
12/06/2017 9.12.41 Yes, all of them
12/06/2017 13.41.29 Some of them
12/06/2017 15.55.55 Some of them
12/06/2017 22.06.25 Yes, all of them
13/06/2017 7.07.54 Some of them
13/06/2017 12.00.31 Some of them
13/06/2017 17.04.41 Some of them
13/06/2017 22.19.40 Some of them
14/06/2017 14.14.53 Some of them
14/06/2017 22.02.18 Some of them

Table A.1: Answers to question one (Q1).

A.2.2 Answers to Q2

The following table shows the answers for question one (Q2):

Time-stamp What metrics do you use in your organization?
08/06/2017 18.16.41 None
08/06/2017 19.26.33 Velocity, Other/s
08/06/2017 19.56.53 None
08/06/2017 20.42.09 Cumulative Flow Diagram (CFD), Net Promoter Score (NPS)
08/06/2017 20.47.50 Velocity, Iteration burn-down, Release burn-down
08/06/2017 21.34.50 Velocity, Release burn-down, Cycle Time
08/06/2017 22.20.22 Cycle Time, Net Promoter Score (NPS), Throughput
09/06/2017 0.39.09 Release burn-down, Cycle Time, Net Promoter Score (NPS),

Other/s
09/06/2017 1.37.25 None

Continued on next page

76

A.2. Survey Answers

Table A.2 � Continued from previous page
Time-stamp What metrics do you use in your organization?
09/06/2017 2.52.04 Lead time, Cycle Time, Cumulative Flow Diagram (CFD),

Net Promoter Score (NPS), Throughput
09/06/2017 8.06.45 Velocity, Cycle Time
09/06/2017 8.21.32 Other/s
09/06/2017 8.49.30 None
09/06/2017 8.59.37 Velocity, Release burn-down
09/06/2017 9.51.59 Velocity, Iteration burn-down, Release burn-down
09/06/2017 10.02.04 Velocity, Iteration burn-down, Release burn-down, Cycle

Time
09/06/2017 10.13.11 Cycle Time, Net Promoter Score (NPS), Quality metrics,

Other/s
09/06/2017 23.54.29 Velocity, Release burn-down, Cycle Time, Quality metrics
10/06/2017 3.16.25 Velocity, Iteration burn-down, Release burn-down, Lead time,

Cycle Time, Cumulative Flow Diagram (CFD), Net Promoter
Score (NPS), Return of Investment (ROI), Throughput, Qual-
ity metrics

10/06/2017 4.13.06 Velocity, Cycle Time, Net Promoter Score (NPS), Through-
put

10/06/2017 12.24.04 Velocity, Lead time, Cycle Time, Internal Rate of Return
(IRR), Return of Investment (ROI), Throughput, Quality
metrics

10/06/2017 13.30.18 None
10/06/2017 13.32.39 Net Promoter Score (NPS), Internal Rate of Return (IRR),

Return of Investment (ROI), None
10/06/2017 13.53.39 Velocity, Iteration burn-down, Release burn-down, Lead time,

Cycle Time, Cumulative Flow Diagram (CFD), Net Promoter
Score (NPS), Internal Rate of Return (IRR), Return of Invest-
ment (ROI), Throughput, Quality metrics, Other/s

10/06/2017 13.53.48 Iteration burn-down, Release burn-down, Cumulative Flow
Diagram (CFD), Net Promoter Score (NPS)

10/06/2017 14.29.04 Lead time, Cycle Time, Other/s
10/06/2017 15.07.49 Quality metrics, Other/s

Continued on next page

77

Survey Model and Answers

Table A.2 � Continued from previous page
Time-stamp What metrics do you use in your organization?
10/06/2017 15.15.51 Velocity, Release burn-down, Lead time, Cycle Time, Cumu-

lative Flow Diagram (CFD), Net Promoter Score (NPS), Re-
turn of Investment (ROI), Throughput, Quality metrics

10/06/2017 15.46.29 Velocity, Iteration burn-down, Release burn-down, Net Pro-
moter Score (NPS), Return of Investment (ROI)

10/06/2017 16.23.49 Return of Investment (ROI), Throughput
10/06/2017 16.38.21 Cycle Time, Cumulative Flow Diagram (CFD), Throughput,

Quality metrics
10/06/2017 17.29.06 Velocity, Release burn-down
10/06/2017 17.57.01 Velocity, Release burn-down, Lead time, Cycle Time, Cumu-

lative Flow Diagram (CFD)
10/06/2017 18.15.14 Velocity, Iteration burn-down, Release burn-down
10/06/2017 18.37.40 Velocity, Iteration burn-down, Release burn-down
10/06/2017 18.47.24 Release burn-down, Lead time, Cycle Time, Cumulative Flow

Diagram (CFD), Return of Investment (ROI)
10/06/2017 19.36.21 Velocity, Lead time, Quality metrics
10/06/2017 20.02.20 Velocity, Iteration burn-down, Release burn-down, Quality

metrics, Other/s
10/06/2017 20.03.24 Velocity, Return of Investment (ROI), Throughput
10/06/2017 20.07.33 Iteration burn-down
10/06/2017 20.23.10 Velocity, Release burn-down
10/06/2017 20.36.03 Velocity, Iteration burn-down, Release burn-down, Quality

metrics
10/06/2017 20.40.31 Velocity, Iteration burn-down, Release burn-down, Cycle

Time, Cumulative Flow Diagram (CFD), Throughput
10/06/2017 21.19.03 Lead time, Throughput, Quality metrics, Other/s
10/06/2017 21.23.27 Iteration burn-down, Release burn-down, Lead time, Return

of Investment (ROI)
10/06/2017 21.32.29 Iteration burn-down, Net Promoter Score (NPS), Return of

Investment (ROI), Quality metrics
10/06/2017 23.48.16 Velocity, Iteration burn-down, Throughput
11/06/2017 0.35.29 Velocity, Iteration burn-down
11/06/2017 1.27.07 Velocity, Release burn-down, Cumulative Flow Diagram

(CFD), Quality metrics

Continued on next page

78

A.2. Survey Answers

Table A.2 � Continued from previous page
Time-stamp What metrics do you use in your organization?
11/06/2017 3.26.54 Release burn-down, Quality metrics
11/06/2017 6.26.53 Velocity, Release burn-down, Cycle Time, Net Promoter

Score (NPS)
11/06/2017 8.14.38 Velocity, Iteration burn-down, Quality metrics
11/06/2017 8.54.24 Velocity, Release burn-down, Cycle Time, Quality metrics
11/06/2017 10.26.23 Iteration burn-down, Lead time, Cycle Time, Cumulative

Flow Diagram (CFD), Net Promoter Score (NPS), Through-
put, Quality metrics

11/06/2017 10.50.29 Velocity, Iteration burn-down, Return of Investment (ROI),
Quality metrics

11/06/2017 13.09.47 Cycle Time, Cumulative Flow Diagram (CFD), Throughput,
Other/s

11/06/2017 13.38.33 Other/s
11/06/2017 13.55.06
11/06/2017 14.56.49 Velocity, Iteration burn-down, Release burn-down, Lead time,

Cycle Time, Throughput, Quality metrics
11/06/2017 17.12.20 Velocity, Iteration burn-down
11/06/2017 20.30.08 Velocity, Iteration burn-down, Release burn-down
11/06/2017 21.26.02 Velocity, Iteration burn-down
12/06/2017 1.03.09 Velocity, Iteration burn-down, Cumulative Flow Diagram

(CFD), Throughput
12/06/2017 8.52.34 Cumulative Flow Diagram (CFD), Throughput
12/06/2017 9.12.41 Release burn-down, Cycle Time, Return of Investment (ROI)
12/06/2017 13.41.29 Throughput, Other/s
12/06/2017 15.55.55 Velocity, Iteration burn-down, Release burn-down, Cumula-

tive Flow Diagram (CFD), Return of Investment (ROI), Qual-
ity metrics

12/06/2017 22.06.25 Velocity, Iteration burn-down, Release burn-down, Lead time,
Cycle Time, Cumulative Flow Diagram (CFD), Quality met-
rics

13/06/2017 7.07.54 Velocity, Iteration burn-down, Release burn-down, Lead time,
Cycle Time, Return of Investment (ROI)

13/06/2017 12.00.31 Velocity, Iteration burn-down, Release burn-down, Cumula-
tive Flow Diagram (CFD), Return of Investment (ROI)

Continued on next page

79

Survey Model and Answers

Table A.2 � Continued from previous page
Time-stamp What metrics do you use in your organization?
13/06/2017 17.04.41 Velocity, Iteration burn-down, Release burn-down, Net Pro-

moter Score (NPS)
13/06/2017 22.19.40 Velocity, Iteration burn-down, Release burn-down, Cumula-

tive Flow Diagram (CFD), Net Promoter Score (NPS), Re-
turn of Investment (ROI), Throughput, Quality metrics

14/06/2017 14.14.53 Velocity, Iteration burn-down, Release burn-down, Lead time,
Cycle Time

14/06/2017 22.02.18 Velocity, Iteration burn-down, Release burn-down, Cumula-
tive Flow Diagram (CFD), Return of Investment (ROI)

Table A.2: Answers to question two (Q2).

A.2.3 Answers to Q3

The following table shows the answers for question three (Q3):

Time-stamp What metrics do you think are useful?
08/06/2017 18.16.41 Quality metrics
08/06/2017 19.26.33 Velocity, Others
08/06/2017 19.56.53 Lead time, Cycle Time, Net Promoter Score (NPS), Others
08/06/2017 20.42.09 Cumulative Flow Diagram (CFD), Net Promoter Score (NPS)
08/06/2017 20.47.50 Velocity, Iteration burn-down, Release burn-down, Lead time,

Cycle Time, Throughput
08/06/2017 21.34.50 Velocity, Iteration burn-down, Release burn-down, Lead time,

Cycle Time
08/06/2017 22.20.22 Lead time, Cycle Time, Net Promoter Score (NPS), Through-

put, Others
09/06/2017 0.39.09 Release burn-down, Lead time, Cycle Time, Net Promoter

Score (NPS), Others
09/06/2017 1.37.25 Lead time, Return of Investment (ROI), Throughput
09/06/2017 2.52.04 Lead time, Cycle Time, Net Promoter Score (NPS), Through-

put
09/06/2017 8.06.45 Velocity

Continued on next page

80

A.2. Survey Answers

Table A.3 � Continued from previous page
Time-stamp What metrics do you think are useful?
09/06/2017 8.21.32 Velocity, Release burn-down, Lead time, Cycle Time, Cumu-

lative Flow Diagram (CFD), Net Promoter Score (NPS), Re-
turn of Investment (ROI), Throughput, Quality metrics, Oth-
ers

09/06/2017 8.49.30 Others
09/06/2017 8.59.37 Release burn-down, Cycle Time, Throughput
09/06/2017 9.51.59 Velocity, Iteration burn-down, Release burn-down, Lead time,

Cycle Time, Cumulative Flow Diagram (CFD), Net Promoter
Score (NPS), Internal Rate of Return (IRR), Return of Invest-
ment (ROI), Throughput, Quality metrics

09/06/2017 10.02.04 Velocity, Iteration burn-down, Lead time, Cycle Time, Qual-
ity metrics

09/06/2017 10.13.11 Cycle Time, Net Promoter Score (NPS), Quality metrics
09/06/2017 23.54.29 Velocity
10/06/2017 3.16.25 Velocity, Iteration burn-down, Release burn-down, Lead time,

Cycle Time, Cumulative Flow Diagram (CFD), Net Promoter
Score (NPS), Internal Rate of Return (IRR), Return of Invest-
ment (ROI), Throughput, Quality metrics, Others

10/06/2017 4.13.06 Net Promoter Score (NPS), Quality metrics
10/06/2017 12.24.04 Velocity, Lead time, Cycle Time, Return of Investment (ROI),

Throughput, Quality metrics
10/06/2017 13.30.18 Iteration burn-down, Cycle Time, Cumulative Flow Diagram

(CFD)
10/06/2017 13.32.39 Velocity, Iteration burn-down, Release burn-down
10/06/2017 13.53.39 Iteration burn-down, Release burn-down, Lead time, Cycle

Time, Cumulative Flow Diagram (CFD), Net Promoter Score
(NPS), Internal Rate of Return (IRR), Return of Investment
(ROI), Throughput, Quality metrics, Others

10/06/2017 13.53.48 Velocity, Internal Rate of Return (IRR), Return of Investment
(ROI)

10/06/2017 14.29.04 Lead time, Cycle Time, Others
10/06/2017 15.07.49 Cycle Time, Return of Investment (ROI), Quality metrics

Continued on next page

81

Survey Model and Answers

Table A.3 � Continued from previous page
Time-stamp What metrics do you think are useful?
10/06/2017 15.15.51 Velocity, Lead time, Cycle Time, Cumulative Flow Diagram

(CFD), Net Promoter Score (NPS), Return of Investment
(ROI), Throughput, Quality metrics

10/06/2017 15.46.29 Velocity, Iteration burn-down, Release burn-down, Net Pro-
moter Score (NPS)

10/06/2017 16.23.49 Velocity, Iteration burn-down, Release burn-down, Return of
Investment (ROI), Throughput, Quality metrics

10/06/2017 16.38.21
10/06/2017 17.29.06 Iteration burn-down, Release burn-down
10/06/2017 17.57.01 Velocity, Release burn-down, Quality metrics
10/06/2017 18.15.14 Velocity, Iteration burn-down, Release burn-down
10/06/2017 18.37.40 Iteration burn-down, Release burn-down, Cycle Time,

Throughput, Quality metrics
10/06/2017 18.47.24 Release burn-down, Lead time, Cycle Time, Cumulative Flow

Diagram (CFD), Quality metrics
10/06/2017 19.36.21 Lead time, Cycle Time, Return of Investment (ROI), Quality

metrics
10/06/2017 20.02.20 Velocity, Release burn-down, Return of Investment (ROI),

Throughput, Quality metrics
10/06/2017 20.03.24 Velocity, Lead time, Quality metrics
10/06/2017 20.07.33 Iteration burn-down
10/06/2017 20.23.10 Velocity, Iteration burn-down, Release burn-down, Lead time,

Cycle Time, Cumulative Flow Diagram (CFD), Net Promoter
Score (NPS), Return of Investment (ROI), Throughput, Qual-
ity metrics

10/06/2017 20.36.03 Velocity, Iteration burn-down, Release burn-down, Lead time,
Cycle Time, Cumulative Flow Diagram (CFD), Internal Rate
of Return (IRR), Return of Investment (ROI), Throughput,
Quality metrics, Others

10/06/2017 20.40.31 Lead time, Cycle Time, Cumulative Flow Diagram (CFD),
Throughput, Quality metrics

10/06/2017 21.19.03 Iteration burn-down, Release burn-down, Lead time, Cycle
Time, Return of Investment (ROI), Throughput, Quality
metrics, Others

Continued on next page

82

A.2. Survey Answers

Table A.3 � Continued from previous page
Time-stamp What metrics do you think are useful?
10/06/2017 21.23.27 Velocity, Iteration burn-down, Release burn-down
10/06/2017 21.32.29 Net Promoter Score (NPS), Return of Investment (ROI)
10/06/2017 23.48.16 Velocity, Throughput
11/06/2017 0.35.29 Velocity, Iteration burn-down, Internal Rate of Return (IRR),

Quality metrics
11/06/2017 1.27.07 Velocity, Release burn-down, Cumulative Flow Diagram

(CFD), Quality metrics
11/06/2017 3.26.54 Quality metrics
11/06/2017 6.26.53 Velocity, Net Promoter Score (NPS), Quality metrics
11/06/2017 8.14.38 Velocity, Release burn-down, Quality metrics
11/06/2017 8.54.24 Velocity, Cycle Time
11/06/2017 10.26.23 Lead time, Cycle Time, Cumulative Flow Diagram (CFD),

Net Promoter Score (NPS), Throughput
11/06/2017 10.50.29 Velocity, Iteration burn-down, Release burn-down, Lead time,

Cycle Time, Cumulative Flow Diagram (CFD), Net Promoter
Score (NPS), Internal Rate of Return (IRR), Return of Invest-
ment (ROI), Throughput, Quality metrics, Others

11/06/2017 13.09.47 Lead time, Cycle Time, Cumulative Flow Diagram (CFD),
Return of Investment (ROI), Throughput, Quality metrics

11/06/2017 13.38.33 Others
11/06/2017 13.55.06
11/06/2017 14.56.49 Velocity, Lead time, Cycle Time, Return of Investment (ROI),

Throughput, Quality metrics
11/06/2017 17.12.20 Lead time, Cycle Time
11/06/2017 20.30.08 Others
11/06/2017 21.26.02 Velocity, Iteration burn-down, Release burn-down
12/06/2017 1.03.09 Velocity, Iteration burn-down, Cumulative Flow Diagram

(CFD), Quality metrics
12/06/2017 8.52.34 Cumulative Flow Diagram (CFD), Throughput
12/06/2017 9.12.41 Release burn-down, Return of Investment (ROI), Quality

metrics
12/06/2017 13.41.29 Return of Investment (ROI)

Continued on next page

83

Survey Model and Answers

Table A.3 � Continued from previous page
Time-stamp What metrics do you think are useful?
12/06/2017 15.55.55 Velocity, Iteration burn-down, Release burn-down, Lead time,

Cycle Time, Cumulative Flow Diagram (CFD), Net Promoter
Score (NPS), Internal Rate of Return (IRR), Return of Invest-
ment (ROI), Throughput, Quality metrics

12/06/2017 22.06.25 Internal Rate of Return (IRR), Return of Investment (ROI),
Quality metrics

13/06/2017 7.07.54 Velocity, Iteration burn-down, Release burn-down
13/06/2017 12.00.31 Velocity, Iteration burn-down, Release burn-down, Cumula-

tive Flow Diagram (CFD), Quality metrics
13/06/2017 17.04.41 Velocity, Iteration burn-down, Release burn-down, Net Pro-

moter Score (NPS)
13/06/2017 22.19.40 Iteration burn-down, Cycle Time, Net Promoter Score (NPS),

Return of Investment (ROI)
14/06/2017 14.14.53 Velocity, Iteration burn-down, Release burn-down, Lead time,

Cycle Time, Quality metrics
14/06/2017 22.02.18 Velocity, Iteration burn-down, Release burn-down, Cumula-

tive Flow Diagram (CFD), Return of Investment (ROI)

Table A.3: Answers to question three (Q3).

A.2.4 Answers to Q4

The following list is an exact reproduction of the nineteen (19) answers ob-
tained in question 4 (Q4) of the survey:

� Business Value Delivered

� Scope change

� Deployment rate, business value delivered, employee satisfaction

� The problem is not whether these things are useful (or indeed whether
they are metrics) - it is whether and under what circumstances they
give signi�cant value to o�set their down-sides and their cost. Tools
to give visibility are useful, but start using them as metrics and they
become damaging.

� Developers satisfaction

84

A.2. Survey Answers

� Happiness score

� We use the sprint speed metric to see if we are on target: https://pm.stackexchange.com/
questions/21527/alternatives-to-sprint-burndown-is-it-deprecated/21530#21530
It is simple and it leads to actions, burns-downs suck :)

� I call it E-NPS (Employee NPS), win/loss rate of iterations, accelera-
tion (based on velocity trend), % of forecast done, escaped defects (into
production), �nancial metrics, sustainability, value stream analysis,....

� Relative business value estimated, relative business value delivered

� 1) User value received. Development org value received.

� On scope, automation coverage, code coverage

� Team Happiness index, Customer satisfaction

� Team Satisfaction, how many bugs. Division of type of work

� Frequency of deploying new functionality to the customer

� Please see my paper presentation in my pro�le where I had explained
about Agile Metrics

� The metrics you have focused on using here are quantitative metrics.
When you truly work in an agile way you "metrics" are of a more
qualitative nature. So if I was to give you an example. On the projects
I work on a measure success by the value it is giving to our customers.
Is what I have built being used? do they get use out of it?what can
I do to improve it? what don't they like? I also use metrics such as
the secondary impact of the release into production onto the business
itself... i.e has it reduced calls to a call centre if so by how much and
what is the knock on e�ect to that. But the value is in reducing calls
to call centre and allowing customers to self serve giving a happier
customer. What I try and get clients to care about less is the metrics
used to help get code to production and delivery... Which is most of the
options you have in your questions. The reason for this is because what
I could be building maybe of no use at all... So why would I then say it
is a success just because we built what you asked for, rather than what
was needed. I hope this feedback is at least a bit more constructive to

85

Survey Model and Answers

you than some of the feedback you have received on LinkedIn. From a
delivery manager based in the UK.

� Value outcome

� Customer satisfaction, number of users, employee satisfaction

� Velocity deviation which helps establish how predictable a team is..this
is why I have ticked velocity, velocity as a number is not a metric

86

Bibliography

[1] 2016 state of scrum report. Technical report, Scrum Alliance, 2017.

[2] Lukas Alperowitz, Dora Dzvonyar, and Bernd Bruegge. Metrics in agile
project courses. In Proceedings of the 38th International Conference on
Software Engineering Companion - ICSE '16. ACM Press, 2016.

[3] Elvira Maria Arvanitou, Apostolos Ampatzoglou, Alexander Chatzige-
orgiou, Matthias Galster, and Paris Avgeriou. A mapping study on
design-time quality attributes and metrics. Journal of Systems and Soft-
ware, 127:52�77, may 2017.

[4] Kent Beck and Cynthia Andres. Extreme Programming Explained. Ad-
dison Wesley, 2004.

[5] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, Ron Je�ries, et al. Manifesto for agile software development.
Software Development, 9(8):28�35, 2001.

[6] Woubshet Nema Behutiye, Pilar Rodríguez, Markku Oivo, and Ay³e
Tosun. Analyzing the concept of technical debt in the context of agile
software development: A systematic literature review. Information and
Software Technology, 82:139�158, feb 2017.

[7] Martin P. Boerman, Zeeger Lubsen, Damian A. Tamburri, and Joost
Visser. Measuring and monitoring agile development status. In Pro-
ceedings of the Sixth International Workshop on Emerging Trends in
Software Metrics, WETSoM '15, pages 54�62, Piscataway, NJ, USA,
2015. IEEE Press.

[8] Mike Cohn. User Stories Applied. Addison Wesley, 2004.

87

Bibliography

[9] Mike Cohn. Agile Estimating and Planning. Prentice Hall, 2005.

[10] Mike Cohn. Succeeding with Agile. Addison Wesley, 2009.

[11] Ken W. Collier. Agile Analytics: A Value-Driven Approach to Busi-
ness Intelligence and Data Warehousing (Agile Software Development
Series). Addison-Wesley Professional, 2011.

[12] Giulio Concas, Michele Marchesi, Giuseppe Destefanis, and Roberto
Tonelli. An Empirical Study of Software Metrics For Assessing the
Phases of an Agile Project. International Journal of Software Engi-
neering and Knowledge Engineering, 22(04):525�548, jun 2012.

[13] Subhajit Datta. Agility measurement index. In Proceedings of the 44th
annual southeast regional conference on - ACM-SE 44. ACM Press, 2006.

[14] Christopher W. H. Davies. Agile Metrics in Action: How to Measure
and Improve Team Performance. Manning, 2015.

[15] Giuseppe Destefanis, Steve Counsell, Giulio Concas, and Roberto
Tonelli. Agile processes in software engineering and extreme program-
ming. In Giovanni Cantone and Michele Marchesi, editors, Lecture Notes
in Business Information Processing, chapter Software Metrics in Agile
Software: An Empirical Study, pages 157�170. Springer-Verlag, Berlin,
Heidelberg, 2014.

[16] Scott Downey and Je� Sutherland. Scrum metrics for hyperproductive
teams: How they �y like �ghter aircraft. In 2013 46th Hawaii Interna-
tional Conference on System Sciences. IEEE, jan 2013.

[17] Yael Dubinsky and Orit Hazzan. Using a roles scheme to derive software
project metrics. In Proceedings of the 2004 Workshop on Quantitative
Techniques for Software Agile Process, QUTE-SWAP '04, pages 34�39,
New York, NY, USA, 2004. ACM.

[18] Robert Galen. Agile Re�ections: Musings Toward Becoming "Seriously
Agile" in Software Development. RGCG, LLC, 2012.

[19] Robert Galen. Scrum Product Ownership: Balancing Value from the
Inside Out. RGCG, LLC, 2013.

88

Bibliography

[20] Ilan Goldstein. Scrum Shortcuts without Cutting Corners. Addison
Wesley, 2013.

[21] Yiwei Gong and Marijn Janssen. Measuring process �exibility and
agility. In Proceedings of the 4th International Conference on Theory and
Practice of Electronic Governance - ICEGOV '10. ACM Press, 2010.

[22] Warren Harrison. A �exible method for maintaining software metrics
data: a universal metrics repository. Journal of Systems and Software,
72(2):225�234, jul 2004.

[23] D. Hartmann and R. Dymond. Appropriate agile measurement: Us-
ing metrics and diagnostics to deliver business value. In AGILE 2006
(AGILE'06). IEEE, 2006.

[24] David I Heimann, Peter Hennessey, and A Tripathi. A bipartite
empirically-oriented metrics process for agile software development.
ASQ Software Quality Professional, 9(2):36�48, 2007.

[25] André Janus, Andreas Schmietendorf, Reiner Dumke, and Jens Jäger.
The 3c approach for agile quality assurance. In Proceedings of the 3rd
International Workshop on Emerging Trends in Software Metrics, WET-
SoM '12, pages 9�13, Piscataway, NJ, USA, 2012. IEEE Press.

[26] Henrik Kniberg. Scrum and XP from the Trenches - 2nd Edition. LULU
PR, 2015.

[27] Henrik Kniberg and Mattias Skarin. Kanban and Scrum - Making the
Most of Both. AL LAVALLIS ENTERPRISES LLC, 2010.

[28] Oualid Ktata and Ghislain Lévesque. Designing and implementing a
measurement program for scrum teams: What do agile developers really
need and want? In Proceedings of the Third C* Conference on Computer
Science and Software Engineering, C3S2E '10, pages 101�107, New York,
NY, USA, 2010. ACM.

[29] Martin Kunz, Reiner R. Dumke, and Niko Zenker. Software metrics for
agile software development. In Proceedings of the 19th Australian Con-
ference on Software Engineering, ASWEC '08, pages 673�678, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

89

Bibliography

[30] Eetu Kupiainen, Mika V. Mäntylä, and Juha Itkonen. Why are indus-
trial agile teams using metrics and how do they use them? In Proceedings
of the 5th International Workshop on Emerging Trends in Software Met-
rics, WETSoM 2014, pages 23�29, New York, NY, USA, 2014. ACM.

[31] Eetu Kupiainen, Mika V. Mäntylä, and Juha Itkonen. Using metrics
in agile and lean software development � a systematic literature review
of industrial studies. Information and Software Technology, 62:143�163,
jun 2015.

[32] Mitch Lacey. The Scrum Field Guide. Addison Wesley, 2015.

[33] Valentina Lenarduzzi, Ilaria Lunesu, Martina Matta, and Davide Taibi.
Functional size measures and e�ort estimation in agile development: A
replicated study. In Lecture Notes in Business Information Processing,
pages 105�116. Springer International Publishing, 2015.

[34] V. Mahnic. A case study on agile estimating and planning using scrum.
Electronics and Electrical Engineering, 111(5), jun 2011.

[35] V Mahnic and Ivan Vrana. Using stakeholder driven process performance
measurement for monitoring the performance of a scrum-based software
development process. Elektrotehniski vestnik, 74(5):241�247, 2007.

[36] V. Mahnic and N. Zabkar. Measuring progress of scrum-based software
projects. Electronics and Electrical Engineering, 18(8), oct 2012.

[37] Viljan Mahnic and Natasa Zabkar. Measurement repository for scrum-
based software development process. In Proceedings of the 2Nd WSEAS
International Conference on Computer Engineering and Applications,
CEA'08, pages 23�28, Stevens Point, Wisconsin, USA, 2008. World Sci-
enti�c and Engineering Academy and Society (WSEAS).

[38] Viljan Mahnic and Natasa Zabkar. Using cobit indicators for measuring
scrum-based software development. W. Trans. on Comp., 7(10):1605�
1617, October 2008.

[39] Christoph Matthies, Thomas Kowark, Keven Richly, Matthias U�acker,
and Hasso Plattner. Scrumlint: Identifying violations of agile practices
using development artifacts. In Proceedings of the 9th International

90

Bibliography

Workshop on Cooperative and Human Aspects of Software Engineering,
CHASE '16, pages 40�43, New York, NY, USA, 2016. ACM.

[40] Deepti Mishra, Eda Balcioglu, and Alok Mishra. Measuring project and
quality aspects in agile software development. Technics Technologies
Education Management, 7(1):122�127, 2012.

[41] Sanjay Misra and Martha Omorodion. Survey on agile metrics and their
inter-relationship with other traditional development metrics. SIGSOFT
Softw. Eng. Notes, 36(6):1�3, November 2011.

[42] Alessandro Murgia, Giulio Concas, Sandro Pinna, Roberto Tonelli, and
Ivana Turnu. Empirical study of software quality evolution in open
source projects using agile practices. -, 2009.

[43] Nancy Y. Nee. Metrics for agile projects: �nding the right tools for the
job. PMI® Global Congress 2010, September 2010.

[44] Marta Olszewska (née Pl¡ska), Jeanette Heidenberg, Max Weijola, Kirsi
Mikkonen, and Ivan Porres. Quantitatively measuring a large-scale agile
transformation. Journal of Systems and Software, 117:258�273, jul 2016.

[45] David Nicolette. Software Development Metrics. Manning, 2015.

[46] Frederico Oliveira, Alfredo Goldman, and Viviane Santos. Managing
technical debt in software projects using scrum: An action research. In
2015 Agile Conference. IEEE, aug 2015.

[47] Andrew J Oswald, Eugenio Proto, and Daniel Sgroi. Happiness and
productivity. Journal of Labor Economics, 33(4):789�822, 2015.

[48] K. Petersen and C. Wohlin. Measuring the �ow in lean software devel-
opment. Software: Practice and Experience, 41(9):975�996, apr 2010.

[49] Andrew Pham and Phuong-Van Pham. Scrum in Action: Agile Soft-
ware Project Management and Development. COURSE TECHNOL-
OGY, 2011.

[50] Roman Pichler. Agile Product Management with Scrum. Addison Wes-
ley, 2010.

91

Bibliography

[51] Mary Poppendieck and Tom Poppendieck. Lean Development Software.
Addison Wesley, 2003.

[52] Ken Power. Metrics for understanding �ow. In Agile Software Develop-
ment Conference(Agile 2014), Orlando, FL, USA, 2014.

[53] Roger S. Pressman and Bruce R. Maxim. Software Engineering: A
Practitioner's Approach. McGraw-Hill Education - Europe, 2014.

[54] Analysis.Net Research. The 11th annual state of agile report. Survey
report, VersionOne Inc., 2016.

[55] Eric Ries. The Lean Startup: How Today's Entrepreneurs Use Con-
tinuous Innovation to Create Radically Successful Businesses. Crown
Business, 2011.

[56] Kenneth S. Rubin. Essential Scrum. Addison Wesley, 2012.

[57] Akinori Sakata. Niko-niko Calendar. http://www.geocities.jp/

nikonikocalendar/index_en.html. [Online; Accessed: 10-July-2017].

[58] Marco Scotto, Alberto Sillitti, Giancarlo Succi, and Tullio Vernazza.
Non-invasive product metrics collection. In Proceedings of the 2004
workshop on Quantitative techniques for software agile process - QUTE-
SWAP '04. ACM Press, 2004.

[59] Pedro Serrador and Je�rey K. Pinto. Does agile work? � a quantita-
tive analysis of agile project success. International Journal of Project
Management, 33(5):1040�1051, jul 2015.

[60] Alberto Sillitti, Barbara Russo, Paolo Zuliani, and Giancarlo Succi. De-
ploying, updating, and managing tools for collecting software metrics.
In Proceedings of the 2004 workshop on Quantitative techniques for soft-
ware agile process - QUTE-SWAP '04. ACM Press, 2004.

[61] Miroslaw Staron and Wilhelm Meding. Monitoring bottlenecks in agile
and lean software development projects � a method and its industrial
use. In Product-Focused Software Process Improvement, pages 3�16.
Springer Berlin Heidelberg, 2011.

[62] Andrew Stellman and Jennifer Greene. Learning Agile. O'Reilly UK
Ltd., 2015.

92

http://www.geocities.jp/nikonikocalendar/index_en.html
http://www.geocities.jp/nikonikocalendar/index_en.html

Bibliography

[63] Rod Stephens. Beginning Software Engineering. John Wiley & Sons
Inc, 2015.

[64] Je� Sutherland. Je� sutherland's scrum handbook. Scrum Training
Institute, page 66, 2010.

[65] Je� Sutherland and Ken Schwaber. The scrum guide. The De�nitive
Guide to Scrum: The Rules of the Game. Scrum. org, page 17, July
2016.

[66] C.J. Torrecilla-Salinas, J. Sedeño, M.J. Escalona, and M. Mejías. Esti-
mating, planning and managing agile web development projects under a
value-based perspective. Information and Software Technology, 61:124�
144, may 2015.

[67] Daniel Vacanti and Bennet Vallet. Actionable metrics at siemens health
services. Agile Conference (AGILE), 2014, 2014.

[68] Daniel S. Vacanti. Actionable Agile Metrics for Predictability: An In-
troduction. Daniel S. Vacanti, Inc., 2015.

[69] Stacia Viscardi. The Professional Scrummaster's Handbook. Packt Pub-
lishing, 2013.

[70] Harikesh Bahadur Yadav and Dilip Kumar Yadav. Construction of
membership function for software metrics. Procedia Computer Science,
46:933�940, 2015.

93

	Index
	List of Figures
	List of Tables
	Introduction
	Measurement and Metrics
	Measurement of Scrum

	Research Problem
	Objectives
	Outline

	Agile Teams and Scrum
	Agile Concepts
	Values and Principles
	Methodologies

	Scrum concepts
	Scrum Teams
	Scrum Events
	Scrum Artifacts

	Conclusion: Agile teams practicing Scrum

	Metrics for Scrum Teams
	When is a metric useful?
	Classifying Metrics
	What type of variable do they measure?
	What information do they provide?
	Do they look at the present or the past?
	What are they used for?

	Scrum Metrics
	Burn-down
	Velocity
	Productivity
	Lead Time and Cycle Time
	Value
	Quality
	Metrics for Hyper-productive Teams
	Actionable Metrics
	Metrics for Understanding Flow

	Conclusion: Things to avoid

	Metrics Selection
	Supporting metrics selection
	Survey
	Questions
	Making it public
	Results

	Conclusion: Selected metrics

	Implementation
	Analysis of Tools
	Application Life-cycle Management Tools
	Measurement Tools

	Tuleap
	Solution
	Architecture
	Interaction with the Tuleap REST API
	Result

	Conclusion: Working Environment

	Conclusions
	Contribution
	Future Work

	Survey Model and Answers
	Survey Model
	Survey Answers
	Answers to Q1
	Answers to Q2
	Answers to Q3
	Answers to Q4

	Bibliography

