

TRABAJO FINAL

CLASIFICACIÓN DEL MACIZO ROCOSO Y DIMENSIONAMIENTO DEL SOSTENIMIENTO EN VETA ENCUENTRO INFERIOR

MINA FARALLON NEGRO - YMAD

Aibar María Alejandra

Aibar Tatiana Marianela

Universidad Nacional de Catamarca

Facultad de Tecnología y Ciencias Aplicadas

Departamento Minas

Catamarca, Diciembre 2023

CLASIFICACION DEL MACIZO ROCOSO Y DIMENSIONAMIENTO DEL SOSTENIMIENTO EN VETA ENCUENTRO INFERIOR

MINA FARALLON NEGRO - YMAD

Aibar María Alejandra

Aibar Tatiana Marianela

Trabajo Final de Grado presentado como requisito para obtener el Título de Ingeniería de Minas

Directora

Ing. De Minas Claudia Caletti

Asesor Técnico

Lic. German Loto Campo

INDICE

RESUMEN EJECUTIVO	10
CAPITULO I	12
INTRODUCCION	12
1.1 OBJETIVOS	12
1.2 ANTECEDENTES	13
1.3 ALCANCES Y LIMITACIONES	14
1.4 GENERALIDADES	14
CAPITULO II: MARCO CONCEPTUAL	17
2.1 CLASIFICACION GEOMECANICA	17
2.2 ESFUERZOS ACTUANTES EN EL MACIZO ROCOSO	26
2.3 CRITERIO DE ROTURA DEL MACIZO ROCOSO DE HOEK & BROWN	32
2.4 DISCONTINUIDADES – GENERALIDADES	35
2.4.1 CARACTERÍSTICAS DE LAS DISCONTINUIDADES	35
2.5 SOSTENIMIENTO GENERALIDADES	37
2.6 ELEMENTOS DE SOSTENIMIENTO	42
2.7 SOFTWARE EMPLEADOS	49
CAPITULO III: CLASIFICACION GEOMECANICA	52
3.1 NIVEL 2429 Y 2433	52
3.1.1 PARÁMETROS GEOMECÁNICOS DEL MACIZO	52
3.1.2 CLASIFICACION GEOMECANICA POR TRAMOS	54
3.1.3 DATOS ESTRUCTURALES (DIACLASAS Y FALLAS) DOMINANTES	5 DEL SECTOR59
3.1.4 ANALISIS DE CUÑAS CON SOFTWARE UNWEDGE	64
3.1.5 DETERMINACION DEL SOSTENIMIENTO	67
3.1.6 MODELADO EN FHASE2	72
3.2 NIVEL 2409	74
3.2.1 PARÁMETROS GEOMECÁNICOS DEL MACIZO	74
3.2.2 CLASIFICACION GEOMECANICA POR TRAMOS	75
3.2.3 DATOS ESTRUCTURALES (DIACLASAS Y FALLAS) DOMINANTES	5 DEL SECTOR 78
3.2.4 ANÁLISIS DE CUÑA (UNWEDGE)	80
3.2.5 DETERMINACION DEL SOSTENIMIENTO	82
MODELADO EN PHASE2	85
3.1 NIVEL 2390	87
3.1.1 PARÁMETROS GEOMECÁNICOS DEL MACIZO	87

3	3.1.2	CLASIFICACION GEOMECANICA POR TRAMO	. 88
3	3.1.1	DATOS ESTRUCTURALES (DIACLASAS Y FALLAS) DOMINANTES DEL SECTOR	. 91
3	3.1.2	ANALISIS DE CUÑAS CON SOFTWARE UNWEDGE	. 94
3	3.1.3	DETERMINACION DEL SOSTENIMIENTO	. 95
3	3.1.4	MODELADO EN FHASE2	. 98
3.2	SIMUL	ACION DE MINADO VETA ENCUENTRO INFERIOR	. 99
3.3	ANALIS	SIS DE COSTOS EN SOSTENIMIENTO	105
3	3.3.1	SPLIT SET SISTEMATICO 1,3x1,3 + MALLA ELECTROSOLDADA	107
3	3.3.2	HELICOIDALES SISTEMATICO 1,3x1,3 + MALLA ELECTROSOLDADA	108
3	3.3.3	SHOTCRETE 5cm + MALLA CON PERNOS HELICOIDALES. 1,3 x 1,3m	110
C	APITUL	O IV: CONCLUSIONES Y RECOMENDACIONES	115
C	APITUL	O V: REFERENCIA BIBLIOGRAFICA	118
Δ	NEXOS		120
AN	EXO I: N	//APEO GEOMECANICO - RMR	121
AN	EXO II: S	SOFTWARES UTILIZADOS	126
DIP	S		126
SOF	TWARE	UNWEDGE	130
SOF	TWARE	ROCK DATA	135
SOF	TWARE	PHASE 2	138
AN	EXO III:	PLANILLAS MAPEO GEOMECANICO N2433	145
PLA	NILLAS	DE MAPEO GEOMECANICO N 2409	149
PLA	NILLAS	DE MAPEO GEOMECANICO N 2390	154
ΡΙ Δ	MILLAS	MARTILLO DE SCHMIT	158

INDICE DE ILUSTRACIONES

ILUSTRACION I. UBICACION DEL TACIMIENTO	13
ILUSTRACIÓN 2: MAPA GEOLÓGICO DE FARALLÓN NEGRO	
ILUSTRACIÓN 3: MARTILLO DE SCHMIDT. FOTOGRAFÍA TOMADA EN EL SECTOR	DE
TRABAJO	19
ILUSTRACIÓN 4: ÁBACO DE SCHMIDT. TOMADO DE PEDRO RAMÍREZ OYANGUREI	N Y
LEANDRO ALEJANDRO MONGE. (2004)	19
ILUSTRACIÓN 5: CALCULO DE RQD. TOMADO DE "SISTEMAS DE CLASIFICACION" PR	OF.
ANTONIO KARSULOVIK	20
ILUSTRACIÓN 6: CARTILLA GSI UTILIZADA POR LA EMPRESA YMAD	25
ILUSTRACIÓN 7: VARIACIÓN DE LA TENSIÓN VERTICAL CON LA PROFUNDIDAI) –
INGENIERÍA GEOLÓGICA LUIS GONZALES DE VALLEJOS	
ILUSTRACIÓN 8: COMPONENTES DEL ESTADO DE ESFUERZO EN DOS DIMENSIONE	s –
INGENIERÍA GEOLÓGICA LUIS GONZALES DE VALLEJOS	29
ILUSTRACIÓN 9: CONDICIONES DE EQUILIBRIO - EXCAVACIONES SUBTERRÁNEAS	ΕN
ROCA E. HOEK & E.T. BROWN	
ILUSTRACIÓN 10: DEFORMACIÓN LINEAL VERTICAL EN UN CUBO - EXCAVACIOI	
SUBTERRÁNEAS EN ROCA E. HOEK & E.T. BROWN	31
ILUSTRACIÓN 11: EXCAVACIONES SUBTERRÁNEAS EN ROCA E. HOEK & E.T. BROWN	32
ILUSTRACIÓN 12: EXCAVACIONES SUBTERRÁNEAS EN ROCA E. HOEK & E.T. BROWN	36
ILUSTRACIÓN 13: CONDICIÓN FÍSICA (A Y B) Y CINEMÁTICA (C) PARA LA CA	ιÍDΑ
GRAVITACIONAL DE UNA PIRÁMIDE DE ROCADESDE EL TECHO DE LA EXCAVAC	IÓN
SUBTERRÁNEA. EXTRAÍDO DE HERNÁNDEZ BORDA (1998)	37
ILUSTRACIÓN 14: REPRESENTACIÓN GRÁFICA DE BÓVEDA DE CARGA. TOMADO DE	ΞΕ.
HOEK / E. T. BROWN. (1980)	
ILUSTRACIÓN 15: ABACO DE BARTON, INGENIERÍA GEOLÓGICA GONZALES DE VALLE.	JOS
	41
ILUSTRACIÓN 16: EFECTO VIGA	
ILUSTRACIÓN 17: EFECTO ARCO	
ILUSTRACIÓN 18: EFECTO COLUMNA	
ILUSTRACIÓN 19: PERNO SPLIT SET	
ILUSTRACIÓN 20: PERNO HELICOIDAL	
ILUSTRACIÓN 21: PERNO SWELLEX	
ILUSTRACIÓN 22: PERNO HYDRABOLT	
ILUSTRACIÓN 23: MALLAS METÁLICAS	48
ILUSTRACIÓN 24: SHOTCRETE	
ILUSTRACIÓN 25: POLOS PLASMADOS EN ESTEREOGRAMA	49
ILUSTRACIÓN 26: VISTA DE CUÑAS EN 3D	
ILUSTRACIÓN 27: ESFUERZOS ACTUANTES	51
ILUSTRACIÓN 28: IMAGEN DE LOS NIVELES	54
ILUSTRACIÓN 29: UBICACIÓN TRAMO 1 Y TRAMO 2	55
ILUSTRACIÓN 30: UBICACIÓN TRAMO 3	56
ILUSTRACIÓN 31: UBICACIÓN TRAMO 4 Y 5	57
ILUSTRACIÓN 32: UBICACIÓN TRAMO 6 Y 7	58
ILUSTRACIÓN 33: UBICACIÓN TRAMO 8 Y 9	59
ILUSTRACIÓN 34: A) CONCENTRACIÓN DE DISCONTINUIDADES ENMARCADAS	ΕN
CAMPOS, B) REPRESENTACIÓN GRÁFICA DE PRINCIPALES FAMILIAS DE DIACLASA	AS -
TRAMO 2	60

ILUSTRACIÓN 35: A) CONCENTRACIÓN DE DISCONTINUIDADES ENMARCADAS EN CAMPOS, B) REPRESENTACIÓN GRÁFICA DE PRINCIPALES FAMILIAS DE DIACLASAS TRAMO 3
ILUSTRACIÓN 36: A) CONCENTRACIÓN DE DISCONTINUIDADES ENMARCADAS EN CAMPOS, B) REPRESENTACIÓN GRÁFICA DE PRINCIPALES FAMILIAS DE DIACLASAS
TRAMO 4
TRAMO 5
TRAMO 6
TRAMO 7
ILUSTRACIÓN 41: A) CUÑAS PRESENTES EN TRAMO 2 PROGRESIVA 50 - B) SIMULACIÓN DE SOSTENIMIENTO CON PERNOS HELICOIDALES
DE SOSTENIMIENTO CON PERNOS SPLIT SET
SOSTENIMIENTO CON PERNOS HELICOIDALES
ILUSTRACIÓN 45:A) CUÑAS PRESENTES EN TRAMO 5 PROGRESIVA 30 - B) SIMULACIÓN DE SOSTENIMIENTO CON PERNOS HELICOIDALES
ILUSTRACIÓN 46:CUÑAS PRESENTES EN TRAMO 6 PROGRESIVA 130 - B) SIMULACIÓN DE SOSTENIMIENTO CON PERNOS HELICOIDALES
SOSTENIMIENTO CON PERNOS HELICOIDALES
DE LUIS GONZÁLEZ DE VALLEJOS
DEFORMACIÓN
LABOR CON EXCAVACIÓN, TENSIONES EN HASTIALES Y VECTORES DE DEFORMACIÓN. C) STAGE 3 SOSTENIMIENTO COLOCADO AUMENTO FACTOR DE SEGURIDAD DE LA LABOR
ILUSTRACIÓN 51: ILUSTRACIÓN 22: A) STAGE 1 SIN EXCAVACIÓN, TENSIONES EN EQUILIBRIO. B) STAGE 2 LABOR CON EXCAVACIÓN, TENSIONES EN HASTIALES Y VECTORES DE DEFORMACIÓN. C) STAGE 3 SOSTENIMIENTO COLOCADO AUMENTO FACTOR DE SEGURIDAD DE LA LABOR
ILUSTRACIÓN 52: CONDICIONES DEL FRENTE DE PERFORACIÓN N2409 SE
ILUSTRACIÓN 54: UBICACIÓN TRAMO 5 Y 6, NIVEL 2409
ILUSTRACIÓN 56: A) CONCENTRACIÓN DE DISCONTINUIDADES ENMARCADAS EN CAMPOS, B) REPRESENTACIÓN GRÁFICA DE PRINCIPALES FAMILIAS DE DIACLASAS TRAMO 3 Y TRAMO 4

ILUSTRACIÓN 57: A) CONCENTRACIÓN DE DISCONTINUIDADES ENMARCADAS	
CAMPOS, B) REPRESENTACIÓN GRÁFICA DE PRINCIPALES FAMILIAS DE DIACLAS	
TRAMO 5 Y TRAMO 6	
ILUSTRACIÓN 58: A) CUÑAS PRESENTES EN TRAMO 1 Y 2 - B) SIMULACIÓN	
SOSTENIMIENTO CON PERNOS HELICOIDALES	
ILUSTRACIÓN 59: CUÑAS PRESENTES EN TRAMO 5 PR 20 N2409 SE - B) SIMULACIÓN	
SOSTENIMIENTO CON PERNOS HELICOIDALES	80
ILUSTRACIÓN 60: CUÑAS PRESENTES EN TRAMO 5 PR 70 N2409 SE - B) SIMULACIÓN SOSTENIMIENTO CON PERNOS HELICOIDALES	DE
ILUSTRACIÓN 61: CUÑAS PRESENTES EN TRAMO 6 PR 120 N2409 SE - B) SIMULACIÓN	
SOSTENIMIENTO CON PERNOS HELICOIDALES	
ILUSTRACIÓN 62: CUÑAS PRESENTES EN TRAMO 6 PR 160 N2409 SE - B) SIMULACIÓN	oı
SOSTENIMIENTO CON PERNOS HELICOIDALES	81
ILUSTRACIÓN 63: STAGE 1 SIN EXCAVACIÓN, TENSIONES EN EQUILIBRIO. B) STAG	
LABOR CON EXCAVACIÓN, TENSIONES EN HASTIALES Y VECTORES	DE
DEFORMACIÓN	
ILUSTRACIÓN 64:A) STAGE 1 SIN EXCAVACIÓN, TENSIONES EN EQUILIBRIO. B) STAG	
LABOR CON EXCAVACIÓN, TENSIONES EN HASTIALES Y VECTÓRES	DE
DEFORMACIÓN. C) STAGE 3 SOSTENIMIENTO COLOCADO AUMENTO FACTOR	DE
SEGURIDAD DE LA LABOR	
ILUSTRACIÓN 65: A) STAGE 1 SIN EXCAVACIÓN, TENSIONES EN EQUILIBRIO. B) STAG	
LABOR CON EXCAVACIÓN, TENSIONES EN HASTIALES Y VECTORES	
DEFORMACIÓN. C) STAGE 3 SOSTENIMIENTO COLOCADO AUMENTO FACTOR	
SEGURIDAD DE LA LABOR	87
ILUSTRACIÓN 66: FRENTE DE PERFORACIÓN N2390	
ILUSTRACIÓN 67: UBICACIÓN TRAMOS 1, 2 Y 3	
ILUSTRACIÓN 68: TRAMOS 4 Y 5	
ILUSTRACIÓN 69: ZONAS DE CONCENTRACIÓN Y FAMILIAS DE DISCONTINUIDAD	
TRAMO 1	
ILUSTRACIÓN 70: ZONAS DE CONCENTRACIÓN Y FAMILIAS DE DISCONTINUIDAI	
TRAMO 2	_
ILUSTRACIÓN 71: ZONAS DE CONCENTRACIÓN Y FAMILIAS DE DISCONTINUIDAI TRAMO 3	
ILUSTRACIÓN 72: ZONAS DE CONCENTRACIÓN Y FAMILIAS DE DISCONTINUIDAI	
TRAMO 4	
ILUSTRACIÓN 73: DE CONCENTRACIÓN Y FAMILIAS DE DISCONTINUIDADES TRAMO 5	93
ILUSTRACIÓN 74: CUÑAS Y SIMULACIÓN DE SOSTENIMIENTO TRAMO 1	
ILUSTRACIÓN 75: CUÑAS Y SIMULACIÓN DE SOSTENIMIENTO TRAMO 3	_
ILUSTRACIÓN 76: CUÑAS Y SIMULACIÓN DE SOSTENIMIENTO TRAMO 4	
ILUSTRACIÓN 77: A) STAGE 1 SIN EXCAVACIÓN, TENSIONES EN EQUILIBRIO. B) STAG	
LABOR CON EXCAVACIÓN, TENSIONES EN HASTIALES Y VECTORES	
DEFORMACIÓN. C) STAGE 3 SOSTENIMIENTO COLOCADO AUMENTO FACTOR	
SEGURIDAD DE LA LABOR	
ILUSTRACIÓN 78: DISPOSICIÓN DE LOS CORTES A-A` Y B-B` DE LA VETA ENCUENTRO	100
ILUSTRACIÓN 79: CORTE A-A`	100
ILUSTRACIÓN 80: CORTE AA`, A) STAGE 1, B) STAGE 2	. 101
ILUSTRACIÓN 81: CORTE A-A', A) STAGE 3, B) VECTORES DE DEFORMACIÓN, C) STAG	€ 4
	101
ILUSTRACIÓN 82: CORTE A-A`, A) STAGE 5, B) STAGE 6	
ILUSTRACIÓN 83: CORTE A-A`, A) STAGE 7, B) STAGE 8	
ILUSTRACIÓN 84: CORTE B-B`	
ILUSTRACIÓN 85: CORTE B-B`, A) STAGE 1, B) STAGE 2	103

ILUSTRACIÓN 86: CORTE B-B`, A) STAGE 3, B) STAGE 4	104
ILUSTRACIÓN 87:CORTE B-B`, A) STAGE 5, B) STAGE 6, C) STAGE 7	104
ILUSTRACIÓN 88: CORTE B-B`, A) STAGE 7, B) STAGE 8	105
ILUSTRACIÓN 89: DISPOSICIÓN DE LAS MALLAS ELECTROSOLDADA	106
ILUSTRACIÓN 90: DISTRIBUCIÓN DE PERNOS EN LA MALLA	106
ILUSTRACIÓN 91: APLICACIÓN SHOTCRETE A SECCIÓN COMPLETA	111
ILUSTRACIÓN 92: TOMA DE DATOS DE BUZAMIENTO Y DIRECCIÓN DE BUZAMIENTO	ΕN
CAMPO	121
ILUSTRACIÓN 93: PLANO DE FALLA EN NIVEL 2409	121
ILUSTRACIÓN 94: USO DEL MARTILLO DE SCHMIDT EN CAMPO, TOMA DE UCS	122
ILUSTRACIÓN 95: MEDICIÓN DE RQD	
ILUSTRACIÓN 96: ESPACIADO ENTRE DISCONTINUIDADES	123
ILUSTRACIÓN 97: ESTADO DE LAS DISCONTINUIDADES	
ILUSTRACIÓN 98: ESTADO DE LOS FRENTES EN N2433 Y N2409	
ILUSTRACIÓN 99: PRESENCIA DE AGUA PRODUCTO DE LA PERFORACIÓN	
ILUSTRACIÓN 100: SETUP	
ILUSTRACIÓN 101: CONVENTION	
ILUSTRACIÓN 102: DIP	
ILUSTRACIÓN 103: CONTOUR PLOT	
ILUSTRACIÓN 104: VALORES AGRUPADOS	
ILUSTRACIÓN 105: OPENING - IMPUT DXF	
ILUSTRACIÓN 106: CREAR PROYECTO	
ILUSTRACIÓN 107: JOIN ORIENTATIONS	
ILUSTRACIÓN 108: DIP /DIP DIRECTION	
ILUSTRACIÓN 109. CUÑAS Y SUS CARACTERISTICAS	
ILUSTRACIÓN 110: SOPORTE	
ILUSTRACIÓN 111: CUÑAS, SOPORTE Y CARACTERISTICAS	
ILUSTRACIÓN 112: INTRODUCCIÓN DE LOS PARÁMETROS	
ILUSTRACIÓN 113: PARÁMETRO GSI	
ILUSTRACIÓN 114: TIPO DE ROCA	
ILUSTRACIÓN 115: PARÁMETRO D	
ILUSTRACIÓN 116: RESULTADOS OBTENIDOS	
ILUSTRACIÓN 117: ARCHIVO DXF	
ILUSTRACIÓN 118: IMPORTAR ARCHIVO DXF	
ILUSTRACIÓN 119: INTRODUCIR MATERIALES	
ILUSTRACIÓN 120: ESCENARIOS	
ILUSTRACIÓN 121: DISCRETIZE	
ILUSTRACIÓN 122: TENSIONES	
ILUSTRACIÓN 123: PROPIEDADES DE LOS MATERIALES	
ILUSTRACIÓN 124: SOSTENIMIENTO	
ILUSTRACIÓN 125: ASIGNAR PROPIEDADES	
ILUSTRACIÓN 126: EXCAVACIÓN	
ILUSTRACIÓN 127: SOSTENIMIENTO	
ILUSTRACIÓN 128: COMPUTAR	
ILUSTRACIÓN 129: INTERPRETAR	144
INDICE DE TABLAS	
TABLA 1: PARÁMETROS DE CLASIFICACIÓN Y SUS VALORES	22
TABLA 2: ORIENTACIÓN DE LAS DISCONTINUIDADES	

TABLA 3: DETERMINACIÓN DE LA CLASE DE MACIZO ROCOSO	
TABLA 4: TIEMPO DE AUTO SOPORTÉ SEGÚN RMR	
TABLA 5: TABLA ESR DE BARTON, PARA DETERMINAR LA PUNTUACIÓN SEGÚN SE	EA EL
USO QUE TENDRÁ LA EXCAVACIÓN	24
TABLA 6: CLASIFICACIÓN DE BARTON	24
TABLA 7: CUADRO DE SOSTENIMIENTO SEGÚN RMR, SACADO DE INGENIERÍA GEOLÓ	GICA
- GONZALES VALLEJOS	39
TABLA 8: TABLA ESR DE BARTON, PARA DETERMINAR LA PUNTUACIÓN SEGÚN SE	
USO QUE TENDRÁ LA EXCAVACIÓN	
TABLA 9: PARÁMETROS GEOMECÁNICO DE LA ROCA	
TABLA 10: CLASIFICACIÓN GEOMECÁNICA – TRAMO 1 Y 2 N2429 SE Y NO	
TABLA 11: CLASIFICACIÓN GEOMECÁNICA - TRAMO 3 NIVEL 2429 NO	
TABLA 12: CLASIFICACIÓN GEOMECÁNICA - TRAMO 4 Y 5, NIVEL 2433 SE	
TABLA 13: CLASIFICACIÓN GEOMECÁNICA - TRAMO 6 Y 7, NIVEL 2433 SE	
TABLA 14: CLASIFICACIÓN GEOMECÁNICA - TRAMO 8 Y 9, NIVEL 2429	
TABLA 15: DIP Y DIP DIRECTION CORRESPONDIENTES AL TRAMO 2	
TABLA 16:DIP Y DIP DIRECTION CORRESPONDIENTES AL TRAMO 3	
TABLA 17: DIP Y DIP DIRECTION CORRESPONDIENTES AL TRAMO 4	
TABLA 18: DIP Y DIP DIRECTION CORRESPONDIENTES AL TRAMO 5	
TABLA 19: DIP Y DIP DIRECTION CORRESPONDIENTES AL TRAMO 6	
TABLA 20:DIP Y DIP DIRECTION CORRESPONDIENTES AL TRAMO 7	
TABLA 21: DIP Y DIP DIRECTION CORRESPONDIENTES AL TRAMO 8 Y TRAMO 9	
TABLA 22: RESUMEN DE CARACTERÍSTICAS DE CUÑAS ANALIZADAS N2429 Y 2433	
TABLA 23: CALCULO DE SOSTENIMIENTO SEGÚN CLASIFICACIÓN RMR	
TABLA 24: CALCULO DE SOSTENIMIENTO SEGÚN CLASIFICACIÓN Q DE BARTON	69
TABLA 25: CÁLCULO DE SOSTENIMIENTO SEGÚN CLASIFICACIÓN GSI	70
TABLA 26: ESPACIADO DE PERNOS EN FUNCIÓN DEL TIPO DE BULÓN	71
TABLA 27: CLASIFICACIÓN GEOMECÁNICA - TRAMO 1 Y 2, NIVEL 2409	76
TABLA 28: RESULTADOS CLASIFICACIÓN GEOMECÁNICA - TRAMO 3 Y 4, NIVEL 2409	76
TABLA 29: CLASIFICACIÓN GEOMECÁNICA - TRAMO 5 Y 6, NIVEL 2409	77
TABLA 30: DIP Y DIP DIRECTION CORRESPONDIENTES AL TRAMO 1 Y 2	78
TABLA 31: DIP Y DIP DIRECTION CORRESPONDIENTES AL TRAMO 3 Y TRAMO 4	78
TABLA 32: DIP Y DIP DIRECTION CORRESPONDIENTES AL TRAMO 5 Y TRAMO 6	79
TABLA 33: RESUMEN DE CARACTERÍSTICAS DE CUÑAS ANALIZADAS N24209	
TABLA 34: SOSTENIMIENTO RMR	
TABLA 35: SOSTENIMIENTO Q DE BARTON	
TABLA 36: SOSTENIMIENTO GSI	
TABLA 37: ESPACIAMIENTO EN FUNCIÓN DEL PERNO A EMPLEAR	
TABLA 38: CLASIFICACIÓN GEOMECÁNICA TRAMOS 1, 2 Y 3	
TABLA 39: CLASIFICACIÓN GEOMECÁNICA TRAMOS 1, 2 Y 3	
TABLA 40: RESUMEN DIP Y DIPS TRAMO 1	91
TABLA 41: RESUMEN DIP Y DIPS TRAMO 2	
TABLA 42: RESUMEN DIP Y DIPS TRAMO 3	92
TABLA 43: RESUMEN DIP Y DIPS TRAMO 4	
TABLA 44: RESUMEN DIP Y DIPS TRAMO 5	
TABLA 45: RESUMEN DE CARACTERÍSTICAS DE CUÑAS ANALIZADAS N2390	
TABLA 46: SOSTENIMIENTO SEGÚN RMR	
TABLA 47: SOSTENIMIENTO SEGÚN BARTON	
TABLA 48: SOSTENIMIENTO SEGÚN GSI	
TABLA 49: ESPACIAMIENTO DE PERNOS	98

TABLA 50: CANTIDAD DE PERNOS SS POR MALLA	
TABLA 51: FACCIÓN DE LOS ELEMENTOS DE PERFORACIÓN	
TABLA 52: CANTIDAD DE HORAS	107
TABLA 53: SALARIO DEL PERSONAL	
TABLA 54: ANÁLISIS DE COSTOS SS + MALLA ELECTROSOLDADA	
TABLA 55: CANTIDAD DE PERNOS HE POR MALLA	
TABLA 56: FACCIÓN DE ELEMENTOS DE PERFORACIÓN	
TABLA 57: CANTIDAD DE RESINAS PARA 94 PERNOS	
TABLA 58: CANTIDAD DE HORAS	109
TABLA 59: SALARIO DEL PERSONAL	109
TABLA 60: ANÁLISIS DE COSTOS HE + MALLA ELECTROSOLDADA	
TABLA 61: VOLUMEN A SOSTENER	
TABLA 62: CANTIDAD DE AGREGADOS PARA SHOTCRETE	
TABLA 63: CANTIDAD DE PERNOS HE POR MALLA	111
TABLA 64: FACCIÓN DE ELEMENTO DE PERFORACIÓN	
TABLA 65: CANTIDAD DE RESINAS PARA 94 PERNOS	
TABLA 66: CANTIDAD DE HORAS	
TABLA 67: SALARIO DEL PERSONAL	
TABLA 68: ANÁLISIS DE COSTOS SHOTCRETE + HE + MALLA	113
TARLA 60: RESUMEN DE COSTOS	11/

RESUMEN EJECUTIVO

Hoy en día, la extracción de mineral en la actividad minera, se asocia a dos aspectos esenciales: la seguridad de los trabajadores y la sustentabilidad de los procesos productivos.

Desde el punto de vista de las personas, a través de la aplicación de los conceptos geotécnicos es posible tomar las acciones necesarias para que una mina tenga la estabilidad suficiente, con lo cual las personas pueden trabajar sin sufrir lesiones o accidentes fatales, producto de un derrumbe.

Desde el punto de vista de los procesos productivos, la estabilidad del macizo rocoso lograda, permite desarrollar, en forma continua, todas las actividades asociadas a la extracción de materiales desde la mina, con los consiguientes beneficios esperados.

Es por ello que surge la necesidad de tener un conocimiento geotécnico de la mina y así llevar un control, asegurando las condiciones de estabilidad requeridas, para evitar la ocurrencia de eventos que puedan generar un impacto negativo en el desarrollo de la actividad minera

El presente trabajo busca dar apoyo al área de Geomecánica de la empresa YMAD y poder aportar una solución a las problemáticas de sostenimiento que pudieran tener.

Este trabajo se focalizó en labores de desarrollo y preparación de Veta Encuentro Inferior que serán Minadas mediante el método de Long Hole. El trabajo de campo consistió en el mapeo geomecánico in *situ* de los niveles 2429, 2433, 2409 y 2390 hacia el NO y SE, utilizando el criterio de RMR (Rock Mass Rating) de Bieniawski y comparando los resultados con Barton y GSI (Geological Strength Index). De este modo se obtuvo una clasificación del macizo a partir de la cual se determinó la necesidad de sostenimiento y se diseñó acorde a las posibilidades de la empresa.

De manera complementaria y para dar soporte al estudio de campo realizado, se utilizaron softwares (DipDirection, Unwedge, Phase2, RocData) para simular el comportamiento del macizo rocoso y el sostenimiento planteado. Además, se realizó la simulación de la secuencia de minado mediante el uso del Software Phase 2 en las labores de estudio.

El trabajo finaliza con un análisis de costos del sostenimiento resultante que se plantea en base a los elementos y equipos con los que cuenta la empresa. Se distinguen costos por metro de avance en sostenimiento con pernos helicoidales y resina epoxi con malla electrosoldada en una distribución romboidal 1,3 x 1,3 m, pernos Split Set con malla electrosoldada utilizando la misma distribución y por último el sostenimiento con shotcrete de 5 cm de espesor, con pernos helicoidales, resina epoxi y malla electrosoldada, con la misma distribución. La elección por uno

u otro tendrá como base las necesidades de sostenimiento de cada sector, el aporte que haga cada tipo a la solución de esta necesidad y a los costos incurridos para su aplicación.

CAPITULO I

INTRODUCCION

El macizo rocoso se puede definir como la forma en la que se presentan las rocas en el medio natural. Está constituido por la roca intacta o matriz rocosa y las discontinuidades, que pueden ser de variado origen geológico (estratificación, discordancias, fallas, diaclasas, pliegues). La roca intacta más las discontinuidades, conforman la estructura del macizo rocoso, confiriéndole características anisótropas, heterogéneas, discontinuas e inelásticas. (Ramírez Oyanguren y Monge, 2004)

El principal problema que con frecuencia se presenta al momento del diseño estructural de una excavación minera, ya sea subterránea o superficial, está en tratar de predecir el comportamiento geomecánico del macizo rocoso, que se encuentra sujeto a las tensiones que se le aplican a lo largo de toda su vida operativa (Brady y Brown, 1985).

Es por estas causas, que surge la necesidad de estudiar los materiales de origen geológico por sí solos y en su interacción con las discontinuidades que lo atraviesan.

Las clasificaciones geomecánicas constituyen una herramienta habitual para la caracterización de los macizos rocosos en los que van a desarrollarse diversas obras de ingeniería. Existen distintas clasificaciones geomecánicas, las más utilizadas actualmente son: Rock Mass Rating (RMR) de Bieniaswki (1989), Índice Q de Barton (1974), Geological Strength Índex (GSI) y Hoek, Kaiser y Badwen (1995).

La necesidad de obtener una clasificación geomecánica del macizo rocoso en los Niveles de Veta Encuentro Inferior con el propósito de determinar su comportamiento geomecánico y la calidad del mismo, ofrece la posibilidad de realizar el presente estudio.

La caracterización apropiada del macizo rocoso contribuye al mejoramiento de las condiciones de estabilidad del mismo (anclajes, inyecciones, drenaje) y permite obtener elementos claves para una mejor planificación de la explotación de estos Niveles.

1.1 OBJETIVOS

1.1.2 OBJETIVO GENERAL

Caracterizar geomecánicamente el macizo rocoso en las labores de avance y desarrollo Under Ground (UG), en el sector denominado Veta Encuentro Inferior,

del Complejo Minero Industrial Farallón Negro y dimensionar el sostenimiento óptimo para dichas labores.

1.1.3 OBJETIVOS ESPECÍFICO

- Describir a partir de observaciones de campo las características geológicas de la zona objeto de estudio.
- Caracterizar el macizo rocoso mediante mapeo geomecánico *in situ* de las labores de avance y desarrollo (galerías basales Long Hole)
- Clasificar geomecánicamente el macizo rocoso en estudio según sistemas GSI, RMR y Q de Barton.
- Identificar y dimensionar los requerimientos de sostenimiento a través de métodos empíricos y computacionales en los sectores objeto de estudio.
 - Determinar el costo de sostenimiento recomendado.
- Recomendar el sostenimiento óptimo de acuerdo a las necesidades y a la dinámica de la operación, teniendo en cuenta los recursos y disponibilidad de la empresa.

1.2 ANTECEDENTES

Actualmente la operación consiste en la extracción subterránea de oro y plata mediante el método de taladros largos o Long Hole (variante del método realce por subniveles). Se encuentra en actividad el sector denominado Alto la Blenda que tiene como vetas principales a Veta Laboreo (hoy por hoy inactivo), Veta Esperanza, Veta Esperanza SE, Veta Encuentro Inferior y Superior y Veta por Venir. Como proyecto a futuro de explotación se encuentra en exploración Veta Nueva Esperanza, que es una profundización de Veta Esperanza SE.

La empresa cuenta con un Área Técnica de soporte, que tiene a cargo al Departamento de Planificación de Mina, Geología de Mina, Topografía de Mina y Geomecánica; esta última cuenta con un geólogo especialista en geomecánica y un geólogo junior, que están a cargo de realizar tareas de mapeo y sostenimiento en interior de mina.

Al haber una profundización de la Veta Encuentro, denominada Veta Encuentro Inferior, desarrollada desde hace unos años atrás a esta parte, existen niveles cuyo sostenimiento es incierto debido a la falta de caracterización y clasificación del macizo rocoso que lo justifique. Este trabajo se centra en los Niveles 2429, 2433, 2409 y 2390 cuya explotación se realizará mediante el método

Tiros Largos, por lo que el sostenimiento debe ser acorde a las necesidades de la operación.

1.3 ALCANCES Y LIMITACIONES

El mapeo geomecánico se efectúa en niveles ya desarrollados (2429 SE, 2433 NO/SE y 2409 NO/SE) que no cuentan con una base de datos al respecto, mientras que en los sectores que se encuentran actualmente en avance (2390), el relevamiento de estructuras lo efectúa el Área de Geomecánica conforme avanza el desarrollo. Las labores en estudio, tienen dimensiones de 3,8m x 3,8m establecidas por Servicio Técnico, y también algunas zonas con sobre excavación debido a las condiciones del macizo. Están provistas de mallas y pernos Split set, y mallas y pernos helicoidales como método de sostenimiento y en algunos sectores, shotcrete, lo que imposibilitara el mapeo del mismo.

Los datos relevados en el campo son: estructuras dominantes en los niveles, características de las estructuras, rugosidad, contactos, abertura, etc. Éstos se vuelcan en una base de datos para luego, mediante el uso de software, facilitados por la empresa y de acuerdo a un criterio de trabajo definido por la misma, se dimensiona el sostenimiento, siempre teniendo en cuenta que serán minados mediante el método de tiros largos.

Por lo antes descrito, este trabajo se concentra en la caracterización y clasificación geomecánica del macizo rocoso en las áreas anteriormente descriptas de Veta Encuentro Inferior, condicionado por el avance, estado y dimensiones de las labores para finalmente recomendar el tipo de sostenimiento óptimo justificado por el estudio, coherente con los estándares mínimos de sostenimiento establecidos y con los recursos físicos que dispone la empresa.

1.4 GENERALIDADES

YMAD es titular de una concesión minera de 344 km², donde se encuentran yacimientos y manifestaciones mineralizadas del tipo vetiforme que contienen oro, plata, manganeso y del tipo diseminado que contiene cobre, oro, plata y molibdeno.

Es una Empresa Ínter jurisdiccional nacida a partir del Acta de Farallón Negro, con participación de la Provincia de Catamarca, la Universidad Nacional de Tucumán y el Estado Nacional.

1.4.1 UBICACION

El Distrito mineralizado Farallón Negro se localiza en la concesión minera de Yacimientos Mineros de Agua de Dionisio, que tiene una superficie de 344 km², ubicado entre los paralelos 27° 15' y 27° 25' de latitud Sur y los meridianos 66° 31' y 66° 45' de longitud Oeste; en el Distrito Hualfín, Dpto. Belén, Provincia de Catamarca, República Argentina, a una altura promedio de 2.600 m.s.n.m.

El acceso desde la ciudad de San Fernando del Valle de Catamarca se realiza a través de las Rutas Nacionales N° 38, 60 y 40, pasando por las localidades de Londres, Belén, Hualfín hasta los Nacimientos, desde donde se transita por Ruta Provincial N° 35 hasta llegar al Complejo Minero Industrial. Distancia aproximada, 400 km (Ilustración 1).

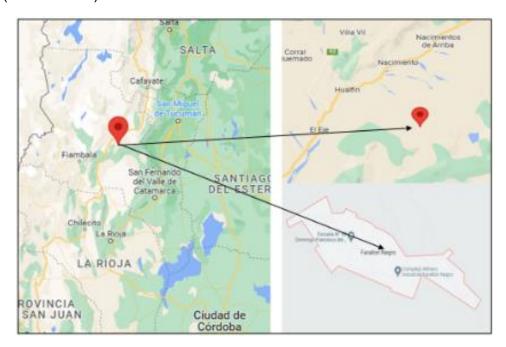


Ilustración 1: Ubicación del Yacimiento

1.4.2 MARCO GEOLOGICO Y MINERALIZACION

Según Llambías, (1972) las unidades geológicas que están comprendidas dentro del área de la reserva de YMAD pertenecen en su casi totalidad al Complejo Volcánico de Farallón Negro de edad Terciaria. Ilustración 2.

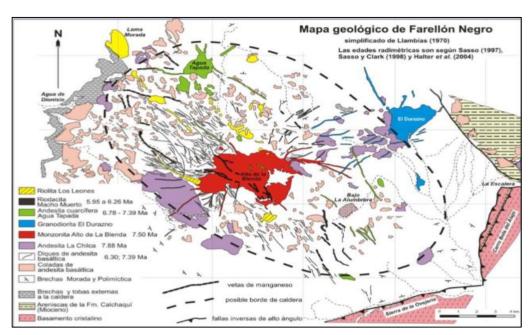


Ilustración 2: Mapa Geológico de Farallón Negro

El Grupo Volcánico Farallón Negro comprende gran variedad de rocas cuya composición varía desde basalto - basandesita hasta riolita, y constituyen tobas, brechas (flujos piroclásticos), diques, coladas, domos endógenos y stocks. Las rocas más abundantes son andesitas y basandesitas. En general la forma del complejo se puede considerar como un óvalo cuyo eje mayor, que mide unos 18 km, está orientada NO-SE, y su eje menor, de 16 km de largo, está orientado NE-SO. La superficie es de alrededor de 255 km².

Desde el año 1978 la empresa obtiene oro y plata, que proviene de la explotación de los yacimientos vetiformes. El complejo volcánico Farallón Negro comprende dos sistemas vetiformes: Farallón Negro-Alto de la Blenda y Capillitas. El primero está localizado a 8 km al oeste-noroeste de Bajo La Alumbrera, emplazado en rocas definidas como brechas andesíticas y por un stock de composición monzonítica de Alto de la Blenda, aunque las porciones más productivas del sistema están localizadas cerca del stock, aparecen en diques andesíticos portadores de pirita que intruyen a las brechas y a la monzonita (Montenegro, 1993). El depósito Farallón Negro - Alto de la Blenda, representa un tipo de depósito epitermal de baja sulfuración, reconocido por Sillitoe (1989) caracterizado por una alteración sericítica intensa en la roca de caja, así como una relación espacial estrecha con rocas intrusivas portadoras comúnmente de mineralización tipo pórfido cuprífero, formada a mayores profundidades que los depósitos epitermales de baja sulfuración

CAPITULO II: MARCO CONCEPTUAL

2.1 CLASIFICACION GEOMECANICA

Los diferentes sistemas de clasificación geomecánica se emplean de forma generalizada en ingeniería para hacer una predicción del comportamiento de los macizos rocosos frente a excavaciones, siendo la principal aplicación de éstas el dimensionamiento y selección del sostenimiento de túneles más eficaz y económico posible, según sea la duración temporal de la labor.

2.1.1 CLASIFICACION BIENIAWSKI (HOEK & BROWN)

No existe una clasificación sencilla que pueda dar una idea del comportamiento complejo de la roca que rodea una excavación. Por lo tanto, puede ser necesaria alguna combinación de los factores como el RQD y la influencia de rellenos arcillosos y de la meteorización; Bieniawski propuso una clasificación de este tipo.

Bieniawski aconseja que una clasificación de un macizo rocoso fisurado debe:

- Dividir el macizo en grupos de comportamiento parecido.
- Proporcionar una buena base para la comprensión de las características del macizo.
- Facilitar la planeación y el diseño de estructuras en la roca al proporcionar datos cuantitativos que se necesitan para la solución de problemas de ingeniería.
- Proporcionar una base común de comunicación efectiva para todas las personas interesadas en un problema de geomecánica.

Este propósito se lograría si la clasificación:

- Es "sencilla y significativa en sus términos"
- Se apoya en parámetros que se dejan medir y pueden establecerse en el campo de manera rápida y económica.

Para cumplir con estos propósitos Bieniawski propuso originalmente que su "Clasificación Geomecánica" comprendiera los siguientes parámetros:

- 1. RQD (Índice de Calidad de la Roca)
- 2. Grado de Meteorización
- 3. Resistencia de la compresión Uniaxial de la roca inalterada
- 4. Distancia entre sí de fisuras y estratificación
- 5. Orientación de rumbo y el echado

- 6. Separación de las fisuras
- 7. Continuidad de las fisuras
- 8. Infiltración de aguas subterráneas

Después de lograr algo de experiencia en la aplicación práctica de la clasificación geomecánica (CSIR) original, Bieniawski modifico su sistema, eliminando el grado de meteorización como parámetro separado, ya que su efecto está tomado en cuenta en la resistencia a la compresión uniaxial e incluyendo la separación y la continuidad de las fisuras en un nuevo parámetro: el estado de las fisuras. Además, eliminó de la lista de parámetros básicos la orientación del rumbo y el echado, y sus efectos se toman en cuenta con el ajuste a la clasificación después de evaluar los parámetros básicos.

Finalmente, los cinco parámetros básicos de la clasificación quedaron como sigue:

A. Resistencia de la Roca Inalterada:

El comportamiento mecánico de las rocas está definido por su resistencia y su deformabilidad al ser sometida a esfuerzos de compresión, estos valores pueden ser determinados en campo, basado en pruebas empíricas o en laboratorio ensayando una probeta de roca. Se expresa en Mega Pascales (MPa) que soporta la roca antes de romperse la probeta. Para estos ensayos la muestra debe ser enviada a un laboratorio de mecánica de rocas.

• Ensayo de compresión simple (UCS):

El ensayo de compresión simple tiene como objetivo determinar la resistencia máxima a la compresión de una muestra cilíndrica de testigo, la cual es sometida a una carga axial sin ninguna carga de confinamiento, que debe ser aplicada de manera continua e incrementada gradualmente hasta que la muestra falle. El esfuerzo normal vertical sobre el espécimen, cuando la falla ocurre, es conocido como la resistencia a la compresión simple o resistencia a la compresión no confinada.

Además del ensayo de compresión simple propiamente dicho, existen otros ensayos que permiten estimar la resistencia obtenida del mismo, estos son el ensayo de carga puntual y el ensayo con esclerómetro (martillo Schmidt).

Ensayo de carga puntual:

Tiene como objetivo estimar la resistencia a la compresión simple de manera indirecta, mediante la obtención del índice IS (50) en muestras de rocas regulares e irregulares. Es un ensayo muy sencillo de ejecución rápida y bajo costo.

Ensayo con esclerómetro (martillo Schmidt):

El ensayo con esclerómetro (Ilustración 3) tiene como objetivo estimar de manera aproximada la resistencia a la compresión simple mediante una correlación entre el número de rebotes, dirección de aplicación de carga y la densidad de la muestra. Para la determinación de la resistencia se utiliza el Abaco de Schmidt (Ilustración 4) al que se ingresa con la dirección de toma de muestra y la cantidad de rebotes. Se puede aplicar tanto a la roca intacta como a las discontinuidades; es un ensayo fácil de realizar, rápido y de uso extendido.

Ilustración 3: Martillo de Schmidt. Fotografía tomada en el Sector de Trabajo

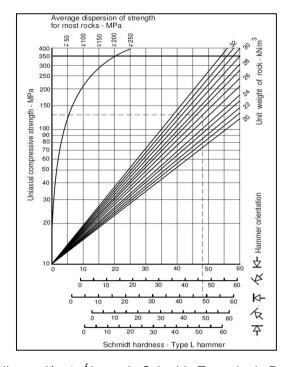


Ilustración 4: Ábaco de Schmidt. Tomado de Pedro Ramírez Oyanguren y Leandro Alejandro Monge. (2004).

B. RQD (Índice de calidad de la Roca según Deere)

La designación de calidad de roca, RQD, fue propuesta por Deere (1967) como un índice de evaluación cuantitativa de la calidad de roca.

Es una estimación de la calidad de roca determinada con testigos de roca obtenidos mediante sondeos. El método consiste en contar los trozos de testigo mayores a 10 cm y hacer la sumatoria de su longitud, este valor se divide en el largo total del testigo. (Ver Ilustración 5).

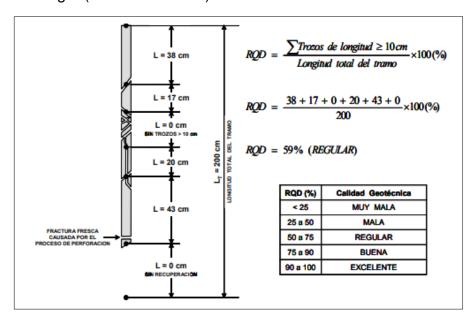


Ilustración 5: Calculo de RQD. Tomado de "SISTEMAS DE CLASIFICACION" Prof. Antonio Karsulovik

$$RQD = \frac{\Sigma \ Testigos > 10 \ cm}{Longitud \ del \ Taladro} \ x \ 100\%$$

El cálculo de RQD también se puede efectuar sobre una pared del macizo rocoso, al no disponer de sondeos, sólo cuando las trazas de las discontinuidades estén expuestas en terreno. Se usa una medida de un metro de longitud y sobre esta se miden y se cuentan los fragmentos de roca en las zonas que son cortados por las discontinuidades (Bacigalupo, 2017).

C. Espaciamiento de las Discontinuidades

El término también es conocido como "Espaciamiento de Juntas" y se refiere a discontinuidades estructurales: fallas, diaclasas, planos de estratificación, etc. y su espaciado, que es la distancia media de los planos de discontinuidad de cada familia, es decir, de cada conjunto con las mismas características geomecánicas.

La resistencia del macizo rocoso se va reduciendo al aumentar el número de juntas, o sea, cuando disminuyen los espaciados de cada familia. Al contrario,

cuando mayor sea la distancia del espaciamiento más competente será la roca en estudio.

D. Condición de las Discontinuidades

Es el estado en el que se encuentra cada junta o discontinuidad, para ello se tienen en cuenta los siguientes parámetros:

- Persistencia (Longitud de la discontinuidad)
- Abertura
- Rugosidad
- Relleno de la junta
- Meteorización (grado de alteración)

E. Presencia de Agua

Se hace un intento de medir la influencia del flujo de aguas subterráneas sobre la estabilidad de la excavación.

F. Orientación de las Discontinuidades

La orientación de las discontinuidades respecto al eje de la estructura subterránea es un factor de suma importancia para determinar el sostenimiento necesario. La correcta orientación de la cavidad puede hacer descender claramente las necesidades de sostener la labor.

Se han asignado valores según la condición observada en los parámetros indicados anteriormente, con ello estimamos el RMR, realizando la sumatoria de los primeros 5 parámetros (Tabla 1). Este RMR calculado luego se modifica en función del último parámetro descrito (orientación de las discontinuidades) (Tabla 2) y finalmente se obtiene el RMR del macizo rocoso, clasificándose dentro de 5 categorías (Tabla 3).

PARAMETROS		ESCALA DE VALORES							
1	RESISTENCIA DE LA ROCA INTACTA	Bajo carga puntual	>10 MPa	4-10 MPa	2-4 MPa	1-2 MPa	preferibl	estos valo e la resisto presión si	encia a la
		A compresión simple	>250 MPa	100-250 MPa	50-100 MPa	25-50 MPa	5-25 MPa	1-5 MPa	<1 MPa
	VA	LOR	15	12	7	4	2	1	0
2	R.O	Q.D.	90%-100%	75%-90%	50%-75%	25%-50%		<25%	
2	VALOR		20	17	13	8		3	
3	ESPACIADO DE LAS JUNTAS		>2 m	0,6-2 m	200-600 mm	60-200 mm	<60 mm		
3	VALOR		20	15	10	8	5		
4	CONDICION DE LAS JUNTAS		Muy rugosas, sin continuidad, cerradas, roca labios sana.	Ligeramente rugosa, separación <1 mm, roca labios ligeramente meteorizada.	Ligeramente rugosa, separación <1 mm, roca labios muy meteorizada.	Espejo o falla o relleno de espesor <5 mm, o juntas abiertas 1-5 mm, juntas continuas.	>5 mm, o	blando de o juntas ab untas con	oiertas >5
	VALOR		30	25	20	10	0		
		FLUJO EN CADA 10 m DE TUNEL, o bien	Ninguno	<10 l/min	10-25 l/min	25-125 l/min	3	>125 l/mii	ı
5	AGUA	Relación de presión de agua en la junta/tensión principal máxima.	0	<0,1	0,1-0,2	0,2-0,5	>0,5		
		CONDICIONES GENERALES	Completamente seco	Manchas de humedad	Muy húmedo	Goteo	F	lujo de ag	ua
	VALOR		15	10	7	4		0	

Tabla 1: Parámetros de Clasificación y sus Valores

RUMBO	PERPENDICUL	AR AL EJE DEI	LTUNEL			
DIRECCIO BUZAM		DIRECCION BUZAM	N CONTRA MENTO	RUMBO PARALELO AL EJE DEL TUNEL		BUZAMIENTO O°-20° (Independiente del
Buzamiento	Buzamiento	Buzamiento	Buzamiento	Buzamiento	Buzamiento Buzamiento	
45°-90°	20°-45°	45°-90°	20°-45°	45°-90°	20°-45°	
Muy favorable	Favorable	Regular	Desfavorable	Muy desfavorable	Regular	Desfavorable
0	-2	-5	-10	-12	-5	-5

Tabla 2: Orientación de las Discontinuidades

CLASIFICACION RMR				
<20 Roca Muy Mala				
21 - 40	Roca Mala			
41 - 60 Roca Regular				
61 - 80 Roca Buena				
81 - 100 Roca Muy Buena				

Tabla 3: Determinación de la Clase de Macizo Rocoso

En la última tabla (Tabla 4) se da una interpretación de estas valuaciones en términos de tiempo de sostén para las excavaciones subterráneas y los parámetros de la resistencia del macizo rocoso.

TIEMPO DE AUTOSOPORTE DE EXCAVACIONES							
Seccion	RMR	Tiempo de autosoporte	Longitud de avance				
	>61	3 Meses	24 metros				
	56 - 60	1 Mes	24 metros				
	51 - 55	15 Dias	21 metros				
3,5 x 3,5	46 - 50	6 Dias	18 metros				
3,3 X 3,3	41- 45	3 Dias	9 metros				
	36 - 40	1 Dias	3 metros				
	31- 35	10 Horas	3 metros				
	<30	2 Horas					
	>61	2 Mese	21 metros				
	56 - 60	25 Dias	21 metros				
	51 - 55	12 Dias	18 metros				
4,3 x 4,0	46 - 50	4,5 Dias	9 metros				
4,3 X 4,0	41- 45	2,5 Dias	6 metros				
	36 - 40	1 Dias	3 metros				
	31- 35	9 Horas	3 metros				
	<30	2 Horas					

Tabla 4: Tiempo de Auto soporté según RMR

2.1.2 CLASIFICACION DE BARTON

Basándose en una gran cantidad de casos de estabilidad en excavaciones subterráneas, Barton, Lien y Lunde del (NGI) Instituto de Geotecnia de Noruega, propusieron un índice para determinar la calidad del macizo rocoso en túneles. En el que el primer cociente corresponde a una estimación del tamaño de los bloques que conforman el macizo rocoso, el segundo corresponde a una estimación de la resistencia al corte entre bloques y el tercero representa lo que Barton (1974) denominan esfuerzo "activo" o también llamado "estado de tensiones en el macizo". El valor numérico de este índice Q se define por:

$$\mathbf{Q} = \left(\frac{RQD}{I_n}\right) x \left(\frac{J_r}{I_a}\right) x \left(\frac{J_w}{SRF}\right)$$

A. ESR de Barton

El valor de Relación de Sostenimiento de Excavación (ESR), de sus siglas en inglés Excavation Support Ratio, asigna una puntuación según el uso que tendrá la excavación realizada, considerando aspectos tales como: el tiempo que se empleará la excavación, aspectos de seguridad y uso. A continuación, se muestra la tabla ESR definida por Barton (1974). (Tabla 5)

	Tipo de excavación	ESR
A	Labores mineras de carácter temporal, etc.	2-5
В	Galerías mineras permanentes, túneles de centrales hidroeléctricas (excluyendo las galerías alta presión), túneles piloto, galerías de avance en grandes excavaciones, cámaras e compensación hidroeléctrica.	1,6-2,0
С	Cavernas de almacenamiento, plantas de tratamiento de aguas, túneles de carreteras secundarias y de ferrocarril, túneles de acceso.	1,2-1,3
D	Centrales eléctricas subterráneas, túneles de carreteras primarias y de ferrocarril, refugios subterráneos para defensa civil, emboquilles e intersecciones de túneles.	0,9-1,1
Е	Centrales nucleares subterráneas, estaciones de ferrocarril, instalaciones públicas y deportivas, fabricas, túneles para tuberías principales de gas.	0,5-0,8

Tabla 5: Tabla ESR de Barton, para determinar la puntuación según sea el uso que tendrá la excavación.

Barton propuso una clasificación a escala logarítmica según la siguiente escala. (Tabla 6).

CLACIFICACIONI DE DADTONI			
CLASIFICACION DE BARTON			
0,001 Y 0,01	Roca excepcionalmente mala		
0,01 y 0,1	Roca extremadamente mala		
0,1 y 1	Roca muy mala		
1 y 4	Roca mala		
4 y 10	Roca media		
10 y 40	Roca buena		
40 y 100	Roca muy buena		
100 y 400	Roca extremadamente buena		
400 y 1000	Roca excepcionalmente buena		

Tabla 6: Clasificación de Barton

2.1.3 CORRELACION ESTRE LOS DOS SISTEMAS DE CLASIFICACION.

Los dos sistemas ya descriptos Bieniawski y Barton, son de interés muy especial, ya que incluyen un número suficiente de datos para poder evaluar correctamente todos los factores que tienen influencia en la estabilidad de una excavación subterránea. En la mayoría de los casos se utilizan ambas clasificaciones, tanto RMR como la calidad de túneles Q, para llegar a solucionar un problema. Se puede comprobar que la ecuación que propone Bieniawski corresponde en forma adecuada a la relación que existe entre ambos sistemas.

$$RMR = 9 x Ln Q + 44$$
$$Q = e^{(RMR - \frac{44}{9})}$$

Al estudiar estos dos sistemas de clasificación, los autores se han concentrado sobre la clasificación básica de los macizos, y en base a esta clasificación, determinar si se necesita ademe o no. Bieniawski y Barton, Lien y Lunde se extendieron para aplicar sus clasificaciones hasta determinar el tipo de ademe que se necesita.

2.1.4 CLASIFICACION DE GSI

El Índice de Resistencia Geológica, GSI, fue desarrollada por Hoek (1994). El GSI es un sistema para la estimación de las propiedades geomecánicas del macizo rocoso a partir de observaciones geológicas en el campo. Este Índice de Calidad Geotécnica se determina en base a dos parámetros que definen la resistencia y la deformabilidad del macizo rocoso:

- **RMS**: es la estructura del Macizo Rocoso, definida en términos de blocosidad y grado de trabazón.
- **JC**: es la condición de las estructuras (discontinuidades) presentes en el macizo rocoso.

La determinación directa en terreno del índice GSI no requiere de cálculos, ya que el valor de GSI se obtiene directamente de la cartilla (Ilustración 6), por comparación de la situación in situ con los casos que se muestran en esta cartilla.

Ilustración 6: Cartilla GSI utilizada por la Empresa YMAD

Sin embargo, en la práctica este método considera una ventana de mapeo y no es aplicable al mapeo geotécnico de sondajes, por lo que es necesario utilizar otro sistema de clasificación para el mapeo de sondajes (RMR), y luego transformar los resultados a valores GSI conforme los siguientes criterios:

 Si se utiliza la versión 1989 del Índice RMR (Bieniawski), deberá suponerse que el macizo rocoso está completamente seco y no deberá efectuarse ajustes por orientación de las estructuras. El valor resultante del índice RMR₈₉ se relaciona con el Índice GSI de la siguiente forma:

$RMR \ge 23$ GSI = RMR - 5

RMR < 23 No se puede estimar el valor GSI

 Si se utiliza el Índice Q (Barton 1974), deberá suponerse que el macizo rocoso está completamente seco y la magnitud del estado tensional es moderada, con lo que los parámetros Jw y SRF se hacen iguales a 1.0. el valor resultante del Índice Q se relaciona con el Índice GSI de la siguiente forma:

$$GSI = 9 Ln Q' + 44$$

2.2 ESFUERZOS ACTUANTES EN EL MACIZO ROCOSO

Los esfuerzos que existen en un macizo rocoso inalterado están relacionados con el peso de los estratos sobreyacentes y con la historia geológica del macizo. Con la creación de una excavación subterránea este campo de esfuerzos se altera, y en algunos casos esta alteración introduce esfuerzos que son los suficientemente grandes para exceder la resistencia de la roca, dando lugar a un debilitamiento de la roca adyacente a los límites de la excavación que puede llevar a la inestabilidad, lo que se manifiesta por el cerramiento gradual de la excavación, derrumbes del techo o, en casos extremos, estallidos de roca. Es decir, la aplicación de nuevas fuerzas, o la modificación de la magnitud o distribución de las preexistentes, da lugar a cambios en el estado mecánico de los sistemas rocosos, produciéndose una serie de efectos internos como desplazamientos, deformación y modificación del estado tensional.

El estado tensional de un sistema es consecuencia de las fuerzas actuantes sobre él, al variar las fuerzas, varía el estado de tensiones asociado a los planos considerados.

Las fuerzas son las responsables primeras del estado y comportamiento mecánico de un sistema. El efecto de una fuerza depende del área total sobre la que se aplica, por lo que trabajar con fuerzas no es adecuado para conocer su influencia sobre el comportamiento de la roca. Si la fuerza total es referida al área A del plano sobre el que actúa, se expresa como tensión o esfuerzo, parámetro independiente del área de aplicación $\sigma = F/A$. La fuerza se mide en unidades del sistema SI o CGS, como Newton (N), Dina, Kilopondio (kp), toneladas fuerza (t).

El esfuerzo se define como la reacción interna de un cuerpo a la aplicación de una fuerza o conjunto de fuerzas, y es una cantidad que no se puede medir directamente ya que el parámetro físico que se mide es la fuerza. Si la fuerza actúa uniformemente en una superficie, el esfuerzo o tensión indica la intensidad

de las fuerzas que actúan sobre el plano. Las unidades de esfuerzo son kp/cm², KN/m² o KPa, MN/m² o MPa, etc.

2.2.1 TENSIONES NATURALES

Las tensiones en el interior de un macizo rocoso están producidas por las fuerzas exteriores aplicadas y por el peso propio del material. El estado o sistema de esfuerzo resultante suele ser bastante complejo.

El estado tensional en la corteza terrestre obedece a distintas causas, siendo las principales:

- Tensiones de origen tectónico
- · Tensiones gravitacionales
- Tensiones de origen no renovable.

Las tensiones de origen tectónico son las responsables del movimiento de placas litoesféricas y constituyen la fuente principal de los esfuerzos presentes en las rocas. A través del conocimiento geológico es posible determinar las zonas corticales sometidas a los esfuerzos y mediante diversos métodos de análisis estructural se puede llegar a estimar tanto la orientación de los esfuerzos como la magnitud.

Las tensiones gravitacionales o litoestáticas se producen como consecuencia del peso de los materiales geológicos. Si en un punto no actúa otro tipo de esfuerzo, el estado tensional es el correspondiente a las fuerzas gravitacionales que ejercen los materiales supra yacentes y confinante, y las tensiones o esfuerzos son la vertical y horizontal.

σ 1= σ v, σ 2= σ 3= σ h.

La tensión vertical en un punto debida a la carga de materiales suprayacentes viene dada por $\sigma v = \rho g z$, siendo ρ la densidad del material, g la gravedad y z la profundidad o espesor de materiales (Ilustración 7). Su magnitud es del orden de 0,027 MPa/m (1 MPa \approx 40m).

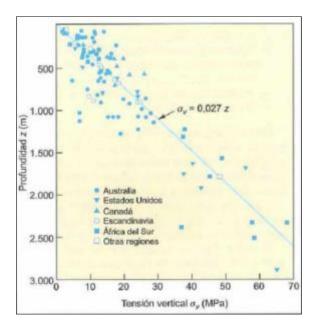


Ilustración 7: Variación de la Tensión Vertical con la Profundidad – Ingeniería Geológica Luis Gonzales de Vallejos

Esta tensión compresiva vertical origina esfuerzos laterales horizontales al tender las rocas a expandirse en direcciones transversales con respecto a las cargas verticales. En cuerpos elásticos la expansión transversal puede expresarse por el coeficiente de Poisson:

$$v = \epsilon t \epsilon l$$

Donde ϵt es la deformación transversal y ϵl la deformación longitudinal. Si la roca no es libre de expandirse transversalmente (ϵt = 0), se crea un esfuerzo transversal cuyo valor es:

$$\sigma$$
transversal = σ h = $(v 1 - 1)\sigma v (1)$

Considerando un valor medio v=0.25, la relación $K=\sigma h \sigma v$ vale aproximadamente un tercio, entonces:

$$\sigma h = 0.33 \sigma v (2)$$

Las tensiones de origen no renovable pueden ser generada por efectos térmicos sobre los materiales rocosos, por flexiones o abombamientos en la corteza o como consecuencia de cambios en el radio de curvatura de una placa tectónica, pudiendo dar lugar, en teoría, a grandes esfuerzos en la corteza, aunque debido a que no son renovables, se disipan en procesos de rotura frágil dentro de periodos geológicos relativamente cortos.

2.2.2 TENSIONES SOBRE EL PLANO

El estado de esfuerzos o tensiones en un punto queda definido por las fuerzas por unidad de área referidas a los planos perpendiculares **x**, **y** a través del punto. Se asume un material continuo y homogéneo sometido a un campo de fuerzas uniforme y se considera un cuadro de área infinitesimal en reposo. Los esfuerzos resultantes sobre las caras del cuadrado o, lo que es lo mismo, las fuerzas por unidad de área ejercidas por el material circundante sobre las caras del cuadrado deben estar en equilibrio. En cada cara actúa una componente normal y otra tangencial (Ilustración 8)

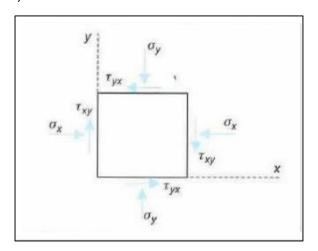


Ilustración 8: Componentes del Estado de Esfuerzo en Dos Dimensiones – Ingeniería Geológica Luis Gonzales de Vallejos

Refiriendo el cuadrado a un sistema de ejes \mathbf{x} , \mathbf{y} las componentes del esfuerzo sobre el **plano** \mathbf{x} (perpendicular al plano \mathbf{x}), son $\mathbf{\sigma}\mathbf{x}$ y $\mathbf{\tau}\mathbf{x}\mathbf{y}$, y sobre el plano \mathbf{y} (perpendicular al plano \mathbf{y}), son $\mathbf{\sigma}\mathbf{y}$ y $\mathbf{\tau}\mathbf{y}\mathbf{x}$. Para el equilibrio resultante de las fuerzas actuando en direcciones \mathbf{x} e \mathbf{y} debe ser igual a cero, además el equilibrio rotacional requiere que los momentos sean iguales a cero: $\mathbf{\tau}\mathbf{y}\mathbf{x} = \mathbf{0}$. Así el estado de esfuerzos en dos dimensiones viene determinado por tres componentes $\mathbf{\sigma}\mathbf{x}$, $\mathbf{\sigma}\mathbf{y}$ y $\mathbf{\tau}\mathbf{x}\mathbf{y}$. El estado de esfuerzos no depende de la orientación del sistema de ejes elegido, pero sus componentes sí. Una vez conocido el estado de esfuerzos en un punto mediante sus componentes, pueden calcularse los esfuerzos sobre cualquier plano de orientación conocida que pase por el punto. Si el estado de esfuerzos del plano se determina con referencia a un sistema de ejes elegido arbitrariamente, los valores de las componentes normal y tangencial dependerían de los ejes elegidos.

Si en lugar de un plano, en cuyo caso el esfuerzo queda definido por un vector, se considera un punto situado en el interior de un cuerpo rocoso, por el mismo pasan infinitos planos de diferente orientación.

En la ilustración 9 se muestra un elemento con las aristas paralelas a los ejes \mathbf{x} , \mathbf{y} , \mathbf{z} . Las tensiones de superficie que se ven en las tres caras visibles son todas positivas. Para la cara paralela al plano \mathbf{yz} , $\sigma \mathbf{x}$ actúa en una dirección \mathbf{x} negativa, \mathbf{y}

 τxy y τxz actúan respectivamente en direcciones negativas x e y, ya que la normal hacia este plano actúa en una dirección negativa x.

Los lados de los elementos se consideran tan pequeños que se desvanecen de modo que los componentes de tracción en cada cara oculta son los mismos que la cara visible correspondiente, esto implica que las condiciones del traslado del equilibrio quedan automáticamente satisfechas. Se puede ver que para satisfacer las condiciones de equilibrio de rotación:

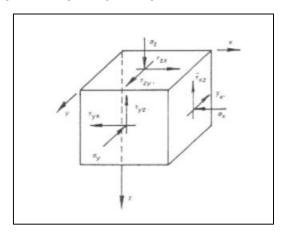


Ilustración 9: Condiciones de Equilibrio – Excavaciones Subterráneas en Roca E. Hoek & E.T. Brown

Los pares de esfuerzos cortantes (τyx , τxy), (τyz , τzy) y (τxz , τzx) se conocen como esfuerzos cortantes conjugados. Para definir completamente el estado de los esfuerzos que actúan sobre este elemento, necesitamos conocer los valores de las seis cantidades independientes σx , σy , σz ,, τyz y τzx que se llaman componentes del **esfuerzo en un punto**.

2.2.3 DEFORMACIONES EN UN PLANO

Un estado de esfuerzos en un plano se define como uno en el que todas las componentes que actúan sobre uno de los tres planos ortogonales en un punto, son cero.

Consideramos un cubo de roca que se carga verticalmente con un esfuerzo axial mediano σz , supongamos que la roca está libre para expandirse lateralmente y que se comporta elásticamente, como lo hacen la mayoría de las rocas tenaces, a niveles de esfuerzos por debajo de sus resistencias a la compresión; la dimensión vertical disminuirá una cantidad W, mientras las dimensiones laterales aumentarán una cantidad u=v (Ilustración 10).

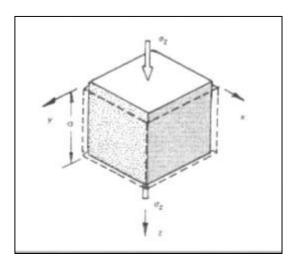


Ilustración 10: Deformación Lineal Vertical en un Cubo – Excavaciones Subterráneas en Roca E. Hoek & E.T. Brown

La deformación lineal vertical en el cubo se define como la deformación por unidad de longitud y corresponde a $\varepsilon = w/a$, para un material elástico lineal, esta deformación está relacionada al esfuerzo vertical por la ecuación $\varepsilon z = \sigma z/E$, donde E es el módulo de Young del material.

La deformación lateral $\varepsilon x = \varepsilon y = -u l a$ se relaciona con el esfuerzo vertical por la ecuación $\varepsilon z = \varepsilon y = -v * \sigma z / E$, donde v es la relación de Poisson del material y las deformaciones por compresión se toman como positivas.

El módulo de Young y la relación de Poisson son propiedades del material a las que generalmente se refiere como constante elástica, para materiales típicos de roca tenaz, el módulo de Young se sitúa en el orden de 35 a 105x10³ MPa, y la relación de Poisson varia aproximadamente de 0,15 a 0,30.

2.2.4 TENSIONES PRINCIPALES

Los valores de las seis componentes del esfuerzo en un punto variarán con la orientación de los ejes a los que están referidos. Cualquiera que sea la condición del esfuerzo en un punto, siempre será posible encontrar la orientación particular de los ejes de coordenadas para la cual se desvanecen todas las componentes del esfuerzo cortante. A esos ejes se les llama ejes principales de esfuerzo, y los planos correspondientes paralelos a las caras del elemento de volumen, se llaman planos principales.

Los esfuerzos sobre las caras del elemento son simplemente normales y se llaman esfuerzos principales, se acostumbra a indicarlos con los símbolos $\sigma 1$, $\sigma 2$ y $\sigma 3$, por costumbre también se escoge $\sigma 1$ para el esfuerzo principal mayor, o sea

para el positivo más grande, $\sigma 3$ se escoge para el positivo más pequeño o esfuerzo principal menor, y $\sigma 2$ para el esfuerzo principal intermedio. Por lo tanto:

$$\sigma 1 \geq \sigma 2 \geq \sigma 3 (3)$$

Se sigue esta secuencia, aunque no sean positivos (de compresión) todos los esfuerzos principales, si todos los esfuerzos fueran negativos (o sea de tensión), $\sigma 1$ sería el esfuerzo de tensión principal más pequeño y $\sigma 3$ el más grande (Ilustración 11).

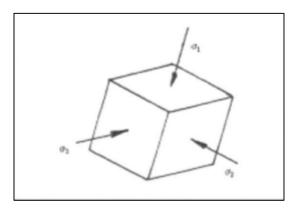


Ilustración 11: Excavaciones Subterráneas en Roca E. Hoek & E.T. Brown

Analizamos los casos posibles:

- 1. Si $\sigma 1 \neq \sigma 2 \neq \sigma 3$ implica que las tres tensiones concurren en tres planos perpendiculares entre sí, existiendo tensiones tangenciales en los demás.
- 2. Si $\sigma 1 \neq \sigma 2 = \sigma 3$ implica que las tensiones correspondientes a planos perpendicular al plano en que actúa $\sigma 1$, resultan iguales entres si, e iguales a $\sigma 2 = \sigma 3$, constituyendo a la dirección de $\sigma 1$, el eje del haz de plano.
- **3.** Si $\sigma 1 = \sigma 2 = \sigma 3$ implica que las tensiones de los infinitos planos que pasan por el punto, son iguales entre sí, no existiendo ningún plano con tensiones tangenciales. El estado de tensión así definido se llama hidrostático.

2.3 CRITERIO DE ROTURA DEL MACIZO ROCOSO DE HOEK & BROWN

El criterio de rotura de macizos rocosos de Hoek – Brown es ampliamente aceptado y ha sido aplicado en un gran número de proyectos a nivel mundial. Hoek y Brown introdujeron su criterio de rotura en un intento de proporcionar los datos de partida para el análisis necesario en el diseño de excavaciones subterráneas en roca competente. El criterio se dedujo a partir de los resultados de las investigaciones de Hoek de roturas frágiles de rocas intactas y de un módulo de

estudio del comportamiento de macizos rocosos de Brown. El criterio partía de las propiedades de la roca intacta y entonces se introducían factores reductores de esta propiedad sobre la base de las características de un macizo rocoso diaclasado.

Los autores intentando relacionar el criterio empírico con las observaciones geológicas, por medio de uno de los sistemas de clasificación de los macizos rocosos, eligieron para este propósito el RMR (Rock Mass Rating) propuesto por Bienawski. Debido a la ausencia de otras alternativas, el criterio fue pronto adoptado por la comunidad de la mecánica de rocas y su uso rápidamente extendido más allá de los límites utilizados en la deducción de las relaciones de reducción de la resistencia. Consecuentemente, llegó a ser necesario reexaminar estas relaciones e introducir nuevos elementos cada vez que dicho criterio era aplicado a un amplio rango de problemas prácticos.

Fruto de estos avances fue la introducción de la idea de macizos rocosos "inalterados" y "alterados" por Hoek y Brown, y la introducción de un criterio modificado para obligar a la resistencia a tracción del macizo rocoso a tender a cero para macizos de calidad muy mala.

$$\sigma 1' = \sigma 3' + \sigma ci (m \sigma 3' / \sigma ci + 1) ^0.5$$

Donde $\sigma'1$ y $\sigma'3$ son los esfuerzos principales efectivos mayor y menor en el momento de rotura, σci es la resistencia a la compresión uniaxial del material intacto y m y s son las constantes del material, donde s=1 para roca intacta.

Hoek trató la derivación de las resistencias cohesivas y de los ángulos de fricción equivalentes para diferentes situaciones prácticas. Estas deducciones se basaron en las tangentes a la envolvente de Mohr obtenida por Bray. Hoek sugirió que la resistencia cohesiva determinada al ajustar una tangente a la envolvente curvilínea de Mohr es un valor sobredimensionado y puede dar unos resultados optimistas en los cálculos de estabilidad. Consecuentemente, puede ser más apropiado un valor medio determinado al ajustar una relación lineal de Mohr-Coulomb por métodos de mínimos cuadrados. También se debe tener en cuenta el concepto de Hoek-Brown generalizado en el que la forma de la curva de la tensión principal o la envolvente de Mohr podría ajustarse por medio de un coeficiente variable **a**, en lugar del término de la raíz cuadrada de la ecuación.

Hoek y Brown intentaron consolidar todos los progresos anteriores en una presentación comprensiva del criterio de rotura y dieron numerosos ejemplos trabajados para ilustrar su aplicación práctica. Además de los cambios en las ecuaciones, también se reconoció que el RMR de Bienawski no era adecuado como vehículo para relacionar el criterio de rotura con las observaciones geológicas en campo, particularmente para macizos rocosos muy débiles.

Ello condujo a la introducción del índice de Resistencia Geológica, GSI (Geological Strenght Index) por Hoek, Wod y Shah, Hoek y Hoek, Kaiser y

Bawden. Éste índice fue posteriormente extendido a macizos rocosos débiles a través de una serie de artículos de Hoek, Marinos y Marinos y Hoek.

2.3.1 CRITERIO DE HOEK – BROWN GENERALIZADO.

Éste se expresa como:

$$\sigma 1' = \sigma 3' + \sigma ci (mb \sigma 3' \sigma ci + s) \alpha (1)$$

Donde mb es un valor reducido de la constante del material mi y está dado por:

$$mb = miexp (GSI-100 28-14D)$$

s y a son constantes del macizo rocoso dadas por las siguientes relacionadas:

$$s = exp (GSI-100 9-3D)$$

$$a = 12 + 16 (e - GSI/15 - e - 20/3)$$

D es un factor que depende sobre todo del grado de alteración al que ha sido sometido el macizo rocoso por los efectos de las voladuras o por la relajación de esfuerzos. Varía de 0 para macizos rocosos in situ inalterados hasta 1 para macizos rocosos muy alterados.

La resistencia a la compresión uniaxial se obtiene haciendo σ 3'= 0 en la ecuación (1), dando así:

$$\sigma c = \sigma c i s a$$

Y siendo la resistencia a tracción:

$$\sigma 1 = -s\sigma ci mb$$

Esta ecuación se obtiene haciendo $\sigma 1' = \sigma 3' = \sigma t$ en la ecuación (1). Esto representa una condición de tensión biaxial. Hoek mostró que, para materiales frágiles, la resistencia a tracción uniaxial es igual a la resistencia a tracción biaxial.

Los valores numéricos de a y s dados por estas ecuaciones están próximos a los dados por las ecuaciones anteriores y no es necesario hacer correcciones o rehacer los antiguos cálculos.

Siendo

$$d\sigma' d\sigma 3' = 1 + amb (mb\sigma 3' / \sigma ci + s) a^{-1}$$

2.3.2 MODULO DE DEFORMACION

Los módulos de deformación del macizo rocoso están dados por:

$$Em[GPa] = (1 - D 2) \sqrt{\sigma ci \ 100 \ 10 \ GSI - 10 \ 40}$$

La ecuación se utiliza cuando $\sigma ci \leq 100 \text{MPa}$. Cuando $\sigma ci > 100 \text{ MPa}$, se utiliza la siguiente expresión:

$$Em[GPa] = (1 - D 2) 10 GSI - 10 40$$

Se observa que la ecuación original propuesta por Hoek y Brown ha sido modificada para la inclusión del factor **D** y así tener en cuenta los efectos de los daños de las voladuras y la relajación de esfuerzos.

2.4 DISCONTINUIDADES – GENERALIDADES

Las discontinuidades se pueden definir como planos de estructuras que afectan a la continuidad de la misma afectando las características mecánicas de la roca, frente a esfuerzos y/o deformaciones. Afectando las características de este, las discontinuidades se presentan en el macizo rocoso de diferentes formas:

PLANOS DE ESTRATIFICACIÓN

Son las superficies que limitan los estratos en las rocas sedimentarias. Se trata de discontinuidades sistemáticas con una continuidad elevada y cuyo espaciado oscila generalmente entre unos pocos centímetros y varios metros.

FALLA

Corresponden a planos de rotura o fracturación que separan dos bloques de masa rocosa con desplazamiento relativo entre los bloques. Existen fallas normales, inversas y de cizalle, dependiendo de la dirección que tengan los bloques sobre la línea de falla. Las extensiones de las fallas varían algunos metros a centenares de kilómetros, pueden llevar asociadas zonas de debilidad denominadas "zonas de falla o brechas".

DIACLASA

Son superficies de fracturación o rotura de la roca que no han sufrido desplazamiento o ha sido muy pequeño, producto de los esfuerzos a los que han sido sometido los macizos rocosos. Son las estructuras más comunes y se pueden encontrar tanto en superficie como en profundidades. Los planos de diaclasas intersectan entre sí formando ángulos definidos con cierta simetría.

VETILLAS O VENILLAS

Corresponde a rellenos de diaclasas u otras estructuras por otros materiales que se depositaron con posterioridad a la generación de fracturas de la masa rocosa, generalmente en estado líquido, como fluidos hidrotermales.

2.4.1 CARACTERÍSTICAS DE LAS DISCONTINUIDADES

ORIENTACIÓN

Corresponde a la disposición espacial, definida por su rumbo y buzamiento. La orientación de unas discontinuidades con respecto de otras determina la forma de los bloques de roca existentes en el macizo rocoso.

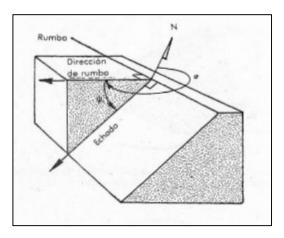


Ilustración 12: Excavaciones Subterráneas en Roca E. Hoek & E.T. Brown

El Rumbo o Dirección de inclinación de un plano (Ilustración 12) es la traza de la intersección de este plano con una superficie horizontal, cuando se habla de Rumbo es necesario definir la dirección en la que se inclina el plano, por lo tanto, un plano queda definido por su Dip Direction (Dirección de inclinación) y su Dip (inclinación), por ejemplo: 240°/20°.

2.4.2 ANÁLISIS DE LAS FUERZAS Y DESLIZAMIENTO DE LAS CUÑAS

La complejidad del diseño de excavaciones en macizos rocosos diaclasados radica en el grado de fracturamiento, que está determinado tanto por el número de familias de diaclasas y por la presencia de características estructurales transgresivas (ej.: diaclasas cruzadas). Estos rasgos generan bloques de roca de diferente forma y tamaño que quedan definidos por la orientación de los planos de diaclasas. Los problemas de estabilidad de excavaciones están relacionados con caídas de bloques o cuñas del techo o paredes, en estos casos, la rotura está controlada por la presencia de discontinuidades, tales como diaclasas, planos de estratificación, fallas y zonas de cizalla, así como el tamaño y geometría de la excavación. Para que un bloque se muestre potencialmente inestable, este debe estar formado por al menos tres planos de discontinuidad.

La rotura estructuralmente controlada y el comportamiento cinemático de los bloques es estudiada mediante técnicas de proyección estereográfica. (Gavilanes y Andrade Haro, 2004).

A. Análisis Cinemático en Labores Subterráneas

Según Hernández Borda (1998): "para que un bloque de roca pueda estar libre y caer del techo o de las paredes de una excavación, es necesario que este

bloque este separado de la masa rocosa que lo rodea por la intersección de por lo menos tres planos estructurales o de discontinuidad".

En minería subterránea, existen dos mecanismos de fallamiento que pueden ser analizados por medio de las proyecciones estereográficas en la red de Schmidt (equal área): falla gravitacional y falla por deslizamiento de cuña.

Se producirá una falla gravitacional si tres planos de discontinuidad se intersectan para formar una cuña en el techo de una excavación subterránea y la línea vertical proyectada desde el vértice de la cuña cae dentro de la base de la misma (Ilustración 13 a y b).

En la proyección estereográfica, la línea vertical a través del vértice está representada por el punto central de la red y la condición establecida arriba es satisfecha si los círculos mayores que representan los planos de discontinuidad forman una figura cerrada que rodea el centro de la red (triángulo esférico) (Ilustración 13 c).

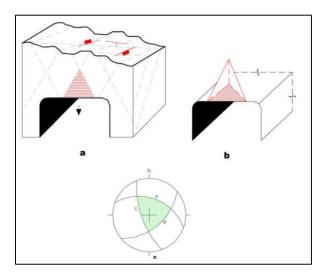


Ilustración 13: Condición física (a y b) y cinemática (c) para la caída gravitacional de una pirámide de rocadesde el techo de la excavación subterránea. Extraído de Hernández Borda

2.5 SOSTENIMIENTO GENERALIDADES

El sostenimiento en excavaciones subterráneas tiene la finalidad de asegurar, controlar y mantener la estabilidad de éstas, a fin de proporcionar condiciones seguras de trabajo y brindar acceso a las labores subterráneas. Para su diseño se deberá tener en cuenta lo siguiente:

- Las características del macizo rocoso.
- La influencia de esfuerzos naturales e inducidos.

- La dirección de la excavación con relación a los rasgos estructurales.
- La forma y las dimensiones de la excavación.
- La deformabilidad del macizo rocoso y de los elementos de sostenimiento a fin de que el diseño asegure la vida de servicio esperada de la excavación.

El tiempo transcurrido entre la ejecución de la excavación y la instalación del sostenimiento dependerá de las condiciones del macizo rocoso. En rocas de buena calidad, el sostenimiento podrá ser retrasado en el tiempo; en caso contrario, la instalación deberá realizarse lo más pronto posible: la colocación tardía del sostenimiento en un determinado tramo, favorece la relajación y descompresión del macizo rocoso, pudiendo ser la causa de manifestaciones de inestabilidad.

2.5.2 BOVEDA DE CARGA

Terzaghi emplea el concepto representando el movimiento de roca suelta hacia el túnel. Él mismo (Terzaghi) realizó muchas pruebas en maquetas utilizando arena sin cohesión para estudiar la forma de lo que él llamaba "Arco del suelo" encima del túnel. (E. Hoek / E. T. Brown. (1980)) (Ilustración 14).

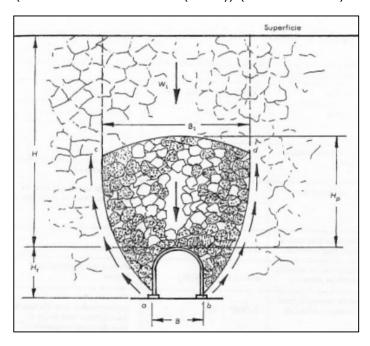


Ilustración 14: Representación gráfica de bóveda de carga. Tomado de E. Hoek / E. T. Brown. (1980).

A partir del RMR de Bieniawski se puede estimar la carga de roca o presión [**W**] sobre el sostenimiento según la expresión:

$$Hp = \frac{100 - RMR}{100} * B \qquad [m]$$

$$\boldsymbol{W} = \boldsymbol{H}\boldsymbol{p} * \boldsymbol{\gamma} \qquad \left[\frac{Tn}{m^2}\right]$$

Donde:

B es el ancho del túnel [m]. Hp es la altura de carga de roca [m]. RMR es Rock Mass Rating (Clasificación Bieniawski) γ es la densidad de la roca $\left\lceil \frac{Tn}{m^3} \right\rceil$.

La clasificación RMR indica explícitamente los tipos de sostenimiento a emplear según se muestra en el cuadro (Tabla 7).

Clase	Excavación		Sostenimiento	
RMR	EXCEVELOR	Bulones	Gunita	Cerchas
I 100-81	Sección completa. Avances de 3 m.	Innecesario, salvo algún bulón ocasional.	No.	No.
II 80-61	Sección completa. Avances de 1-1,5 m.	Bulonado local en clave, con longitudes de 2-3 m y separación de 2-2,5 m, eventualmente con matlazo.	5 cm en clave para impermeabilización.	No.
III 60-41	Avance y destroza. Avances de 1,5 a 3 m. Completar sostenimiento a 20 m del frente.	Bulonado sistemático de 3-4 m con separaciones de 1,5 a 2 m en clave y hastinles. Mallazo en clave.	5 a 10 cm en clave y 3 cm en hastiales.	No.
IV 40-21	Avance y destroza. Avances de 1 a 1,5 m. Sostenimiento inmediato del frente. Completar sostenimiento a menos de 10 m del frente.	Bulonado sistemático de 4-5 m con separaciones de 1-1,5 m en clave y hastiales con mallazo.	10 a 15 cm en clave y 10 cm en hastiales. Aplicación según avanza la excavación.	Cerchas ligeras espaciadas 1,5 m cuando se requieran
V ≤ 20	Fases múltiples. Avances de 0,5-1 m. Gunitar inmediatamente el frente después de cada avance.	Bulonado sistemático de 5-6 m, con separaciones de 1-1,5 m en clave y hastiales con mallazo. Bulonado en solera.	15-20 cm en clave, 15 cm en hastiales y 5 cm en el frente. Aplicación inmediata después de cada avance.	Cerchas pesadas separadas 0,75 m con blindaje de chapas y cerradas en solera.

Tabla 7: Cuadro de sostenimiento según RMR, sacado de Ingeniería Geológica – Gonzales Vallejos

2.5.2 CALCULO DEL SOSTENIIENTO USANDO FORMULAS DE BARTON

Para la estimación del sostenimiento según Barton se deben calcular los siguientes parámetros:

A) Excavation Support Ratio (ESR)

El ESR depende del tipo y el uso final de la excavación, este puede ser entendido como el factor de seguridad según el tipo de obra subterránea, cuyos valores se indican en el siguiente cuadro (Tabla 8).

	Tipo de excavación	ESR
A	Labores mineras de carácter temporal, etc.	2-5
В	Galerías mineras permanentes, túneles de centrales hidroeléctricas (excluyendo las galerías alta presión), túneles piloto, galerías de avance en grandes excavaciones, cámaras e compensación hidroeléctrica.	1,6-2,0
С	Cavernas de almacenamiento, plantas de tratamiento de aguas, túneles de carreteras secundarias y de ferrocarril, túneles de acceso.	1,2-1,3
D	Centrales eléctricas subterráneas, túneles de carreteras primarias y de ferrocarril, refugios subterráneos para defensa civil, emboquilles e intersecciones de túneles.	0,9-1,1
E	Centrales nucleares subterráneas, estaciones de ferrocarril, instalaciones públicas y deportivas, fabricas, túneles para tuberías principales de gas.	0,5-0,8

Tabla 8: Tabla ESR de Barton, para determinar la puntuación según sea el uso que tendrá la excavación.

Este factor se empleará posteriormente para la obtención del Diámetro equivalente (De).

B) Diámetro equivalente del Túnel (De)

Para relacionar el valor del índice "Q" a la estabilidad y requerimiento de sostenimiento de excavaciones subterráneas, Barton et al (1974) definió un parámetro adicional al que se denominó la Dimensión Equivalente (De) de la excavación. Esta dimensión se obtiene dividiendo anchura, diámetro o altura de la pared de la excavación entre una cantidad llamada la Relación de Sostenimiento (ESR).

Siendo "De" un factor cuyo valor se empleará en el "Abaco de Barton", entonces:

$$oldsymbol{De} = rac{anchura, diametro o altura [m]}{ESR}$$

C) Longitud de Bulones (L)

Barton proporciona información adicional acerca de la longitud de los pernos, la longitud "L" de los pernos de roca pueden estimarse a partir del ancho de la excavación "B" y la Relación de sostenimiento de la excavación ESR:

$$L = \frac{(2 + 0.15 * b)}{ESR}$$
 [m]

D) Máximo Vano sin Sostener

El ancho de luz máxima sin sostenimiento puede estimarse a partir de:

Ancho sin sostenimeinto = $2 * ESR * Q^{0,4}$ [m]

E) Abaco de Barton

El siguiente ábaco se emplea para establecer el tipo de sostenimiento en función de "De" y de "Q" (Ilustración 15).

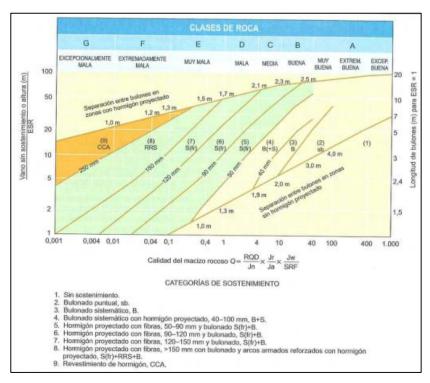


Ilustración 15: Abaco de Barton, Ingeniería Geológica Gonzales de Vallejos

2.5.3 ANÁLISIS DE SOPORTE DE BULONES

Cada tipo de perno posee una capacidad de soporte diferente que es estipulada por el fabricante o bien determinada en campo mediante ensayos de PULL TEST. A modo de ejemplo se tomará el perno Hydrabolt, que poseen una capacidad de anclaje máxima de 12 t. Teniendo un Factor de Seguridad igual a 1,25, la demanda solicitada "*Dp*" de trabajo para el perno Hydrabolt, será:

$$Dp = \frac{12 \, Tn}{1,25} = 9,6 \, Tn$$

Donde para obtener el espaciamiento de los pernos "S", empleamos la siguiente fórmula:

$$S = \sqrt{\frac{Dp}{\rho * Hp}} \qquad [m^2]$$

Donde:

Dp Demanda del perno [Tn].

 ρ Densidad de la roca $\left[\frac{Tn}{m^3}\right]$. Hp Altura de carga [m].

2.6 ELEMENTOS DE SOSTENIMIENTO

El objetivo principal del sostenimiento para las excavaciones subterráneas es ayudar al macizo rocoso a soportarse. En toda explotación minera, el sostenimiento de las labores es un trabajo adicional de alto costo que reduce la velocidad de avance y/o producción pero que a la vez es un proceso esencial para proteger de accidentes al personal y al equipo.

La estabilidad de la roca circundante a una excavación depende de los esfuerzos y de las condiciones estructurales de la masa rocosa detrás de los bordes de la abertura. Cuando se crea una excavación en un macizo rocoso se perturban las tensiones originales y las condiciones de equilibrio, debido a la presencia de rasgos estructurales y a la cantidad de daño causado a la masa rocosa por la voladura, de forma que estas nuevas tensiones pueden superar la resistencia del material, produciéndose fenómenos que implican deformaciones permanentes o colapso de las paredes de la excavación.

El sostenimiento es una solución de ingeniería para dar estabilidad a una excavación, en este caso subterránea, es decir que provee el soporte a la roca excavada limitando deformaciones en la cavidad, también para evitar desprendimientos de roca desde el techo o los hastiales, otorgando niveles de trabajo seguro a los trabajadores y equipos por el tiempo de duración programado de vida útil de la labor.

Los principales tipos de sostenimiento empleados en túneles en roca consisten en:

- Hormigón proyectado, también llamado gunita: tiene dos finalidades principales, sellar la superficie de la roca cerrando las juntas, y evitar la descomprensión y alteración de la roca. El anillo de hormigón proyectado adquiere una resistencia de 50 kp/cm2 a las 8 horas y 280 kp/cm2 a los 28 días.
- Malla electrosoldada o enmallado: está formada por una parrilla de barras corrugadas unidas mediante electrosoldadura y se utiliza muchas veces como refuerzo del hormigón proyectado por su facilidad de adaptación a la forma del

túnel. Generalmente se usan mallas de diámetros de 4,5 a 6 mm con separaciones comprendidas entre 10 a 20 cm.

- Los bulones o pernos: consisten en barras de acero de 20 a 40 mm de sección y longitudes variables, normalmente entre 3 a 6 metros, que se instala en el terreno, previa perforación del taladro correspondiente, admiten cargas del orden de 10 a 25 t; los pernos más utilizados son los constituidos por barras corrugadas, ancladas en toda su longitud con resina o cemento. Otros tipos de pernos son los de fricción, colocados mediante la expansión por agua a presión y de resina de poliéster, armada con fibras de vidrio.
- Las cerchas: son perfiles de aceros laminados en forma de arco que ejercen una función resistente cuando trabajan en contacto con el terreno, por lo tanto, se colocan en

contacto con el mismo a lo largo de toda su longitud y firmemente apoyadas en el suelo. Las cargas de trabajo son generalmente bajas, del orden de 3 a 6 t/m2.

2.6.1 PERNOS DE ANCLAJE

Se utilizan para impedir la separación de la roca reduciendo sus desplazamientos. De esta manera la roca adyacente a la excavación se transforma en un elemento activo del sistema de soporte y virtualmente conforma un arco auto soportante, al sumarse los efectos de pernos adyacentes.

En roca homogénea competente, el papel principal de los pernos es resistir los desprendimientos de bloques o placas en puntos críticos, los cuales pueden ser vitales para evitar la desintegración del terreno, (control de bloques o cuñas inestables).

En roca estratificada competente, los pernos ayudan a resistir el desplazamiento relativo entre estratos, aumentando la rigidez de la viga compuesta y creando ligazón entre bloques, (control de placas inestables).

En roca incompetente, el empernado otorga nuevas propiedades a la roca que rodea la excavación, de modo que modifica su comportamiento y en particular aumenta su cohesión, (control de sección inestable).

El uso de los pernos será para asegurar individualmente bloques definidos en labores de roca de buena calidad o sistemáticos en rocas regulares o malas, para generar el "Efecto arco" en toda la sección, "efecto viga" en el techo y "efecto columna" en paredes o pilares.

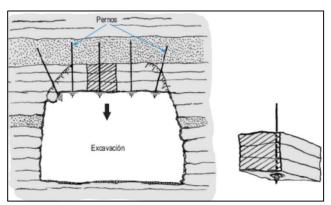


Ilustración 16: Efecto Viga

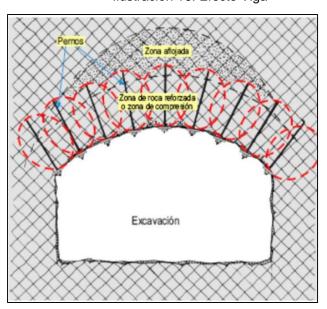


Ilustración 17: Efecto Arco

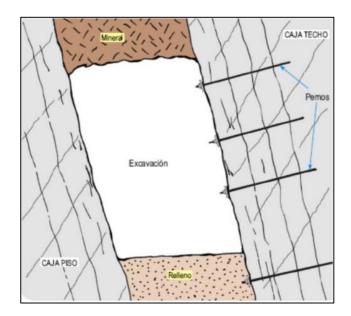


Ilustración 18: Efecto Columna

A. Perno SPLIT SET

El Split Set consiste de un tubo ranurado a lo largo de su longitud, uno de los extremos es ahusado y el otro lleva un anillo soldado para mantener la platina. Al ser introducido el perno a presión, dentro de un taladro de menor diámetro, se genera una presión radial a lo largo de toda su longitud contra las paredes del taladro, cerrando parcialmente la ranura durante este proceso.

La fricción en el contacto con la superficie del taladro y la superficie externa del tubo ranurado constituye el anclaje, el cual se opondrá al movimiento o separación de la roca circundante al perno, logrando así indirectamente una tensión de carga. Ilustración 19.

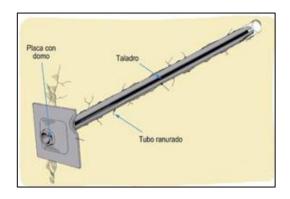


Ilustración 19: Perno SPLIT SET

B. Perno HELICOIDAL

Consiste en una varilla de Hierro o acero corrugadas o helicoidales (roscada a lo largo de toda su longitud, permite el reajuste de la placa contra la pared), el cual es confinado dentro del barreno por medio de cemento (en cartuchos o inyectado), resina (en cartuchos) o resina y cemento. Ilustración 20

El anclaje entre la varilla y la roca es proporcionado a lo largo de la longitud completa del elemento de refuerzo por tres mecanismos: adhesión química, fricción y fijación, siendo los dos últimos mecanismos los de mayor importancia ya que la eficacia de estos pernos está en función de la adherencia entre el hierro y la roca proporcionada por el cementante, que a su vez cumple una función de protección contra la corrosión, aumentando la vida útil del perno.

Cuando se usa cemento en cartuchos o inyectado se requieren de varios días de curado antes de que el perno trabaje a carga completa, mientras que cuando se usan resinas el perno trabaja a carga completa en más o menos 5 minutos.

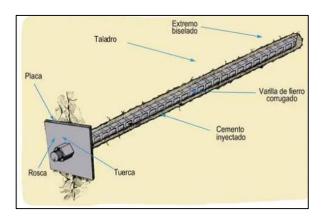


Ilustración 20: Perno HELICOIDAL

C. Perno SWELLEX

Es un perno de anclaje por fricción, pero en este caso la resistencia friccional al deslizamiento se combina con el ajuste, es decir, el mecanismo de anclaje es por fricción y por ajuste mecánico, el cual funciona como un anclaje repartido. Ilustración 21.

El perno Swellex está formado por un tubo de diámetro original de 41 mm el cual es plegado durante su instalación hasta crear una unidad de 25 a 28 mm de diámetro y puede tener entre 60 cm a 12 m de longitud o más (en piezas conectables).

Su instalación no requiere de ninguna fuerza de empuje ya que la varilla es activada por la inyección de agua a presión al interior del tubo plegado (aproximadamente 30 MPa) el cual se infla y lo pone en contacto con las paredes del taladro adaptándose a las irregularidades del barreno consiguiendo el anclaje.

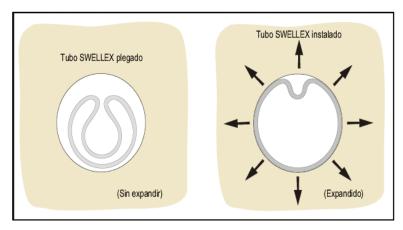


Ilustración 21: Perno SWELLEX

D. Perno HYDRABOLT

El Hydrabolt es un perno de fricción activo y de inmediata instalación al que se les inyecta agua a altas presiones de 25 a 30 MPa (presión correcta de inflado). Se expande de 29 mm a 41 mm y debido a que posee una válvula de retorno, el agua con la que se infla se mantiene en el interior y ejerce presión constante en todo momento, en forma radial a lo largo de la longitud

del taladro. El efecto que genera este tipo de pernos es ayudar a cerrar fracturas y discontinuidades del macizo rocoso previniendo que se deteriore más rápidamente las cajas.

Se obtienen valores promedio de anclaje de 10 t con solamente 30 cm (1 pie) de inflado correcto del perno. Brindando un sostenimiento inmediato que empieza a trabajar al momento en que ha finalizado el inflado, no requiere de ningún tipo de aditivo, ni cemento ni resina, solamente se necesita agua y aire comprimido de mina.

Posee un indicador de carga que solo se muestra si el perno ha sido inflado correctamente, lo que facilita la supervisión porque se puede verificar si han sido instalados a la presión y longitud correcta (Ilustración 22).

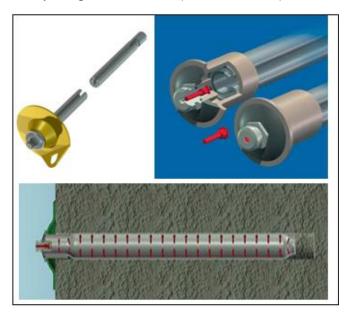


Ilustración 22: Perno HYDRABOLT

2.6.2 MALLA METALICA

La malla metálica principalmente es utilizada para los siguientes tres fines: primero, para prevenir la caída de rocas ubicadas entre los pernos de roca actuando en este caso como sostenimiento de la superficie de la roca; segundo, para retener los trozos de roca caída desde la superficie ubicada entre los pernos

actuando en este caso como un elemento de seguridad; y tercero, como refuerzo del shotcrete.

Existen dos tipos de mallas: la malla eslabonada y la malla electrosoldada. Las mallas pueden ser puestas en forma simple, doble o triple con pequeños desplazamientos entre sí disminuyendo el tamaño de la apertura para impedir el paso de fragmentos de menor tamaño (Ilustración 23).

La malla constituye un sistema de sostenimiento pasivo, solo actuará en el momento que se desprenda material del techo o hastial.

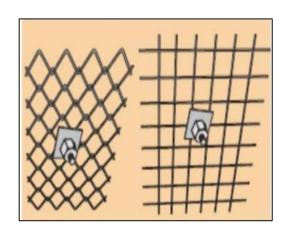


Ilustración 23: Mallas Metálicas

2.6.3 SHOTCRETE (GUNITADO)

El shotcrete o concreto lanzado es una mezcla de cemento, agregados, agua, aditivos y elementos de refuerzo de fibra polipropileno. El shotcrete es un material de construcción estructuralmente sólido y durable, con buenas características de adhesión con la roca y alta resistencia. A diferencia de la malla, el shotcrete al ser proyectado con alta presión sella la roca impidiendo que la humedad o el aire entren a la roca por pequeñas diaclasas o fracturas, mejorando la calidad y durabilidad del sostenimiento.

Es un sistema de sostenimiento pasivo que actuará sólo cuando se produzca un desprendimiento local de material, a diferencia de las mallas, este contendrá ese desprendimiento evitando que se separe del macizo rocoso.

EL control y monitoreo de espesores durante el lanzado de shotcrete es por medio del empleo de calibradores. Estos consisten en un elemento con forma en cruz, poseen una parte punzante que es la que se introduce en el hormigón lanzado previamente hasta el primer tope, señal que indica que llego al espesor programado (Ilustración 24).

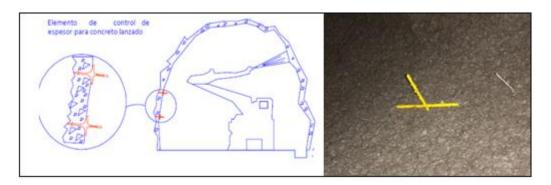


Ilustración 24: Shotcrete

2.7 SOFTWARE EMPLEADOS

En la presente sección se describen de manera general los softwares con los que desarrollamos el trabajo para las correspondientes simulaciones, análisis y posterior toma de decisiones. Siendo estos (Software) pertenecientes a la firma ROCSCIENCE que se dedica al desarrollo de programas informáticos de sustento para la actividad minera. Estos son:

2.7.1 DIPS

Es un software especialmente diseñado para el estudio de las discontinuidades (fallas, fracturas, diaclasas, etc.) de un macizo rocoso mediante la proyección estereográfica, que permite al usuario analizar y visualizar los datos estructurales siguiendo las mismas técnicas utilizadas en estereoscopios manuales, está diseñado para el análisis de las características de estructuras de la roca y permite realizar un análisis estadístico de todas las familias de discontinuidades y un estudio de los mecanismos de falla más probables (Ilustración 25).

Al momento de hablar de familias de diaclasas, se refiere a conocer las orientaciones predominantes de los sistemas de discontinuidades que, interceptados entre ellos, formaran cuñas.

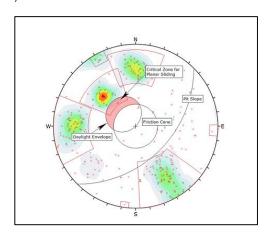


Ilustración 25: Polos plasmados en estereograma

2.7.2 UNWEDGE

Es un programa de análisis y visualización de estabilidad 3D para excavaciones subterráneas en rocas que contienen discontinuidades estructurales que se cruzan. Permite modelar cuñas e inestabilidades de roca en túneles, calcular el factor de seguridad ante diversas condiciones geotécnicas y determinar el refuerzo necesario con elementos resistente (Ilustración 26).

Los factores de seguridad se calculan para cuñas potencialmente inestables y los requisitos de soporte se pueden modelar utilizando varios tipos de patrones de pernos y hormigón proyectado para crear rápidamente un modelo y realizar un análisis de factor de seguridad, colocar refuerzo e interpretar los resultados.

Al realizar una excavación se origina una cara libre, quedando expuestos bloques o cuñas definidos como un volumen de roca que se puede deslizar sobre una superficie o caer por su propio peso. Se debe realizar una evaluación de las estructuras (discontinuidades) y de los factores que influyen en la inestabilidad como los parámetros de resistencia entre las discontinuidades (Cohesión y Angulo de Fricción). Es importante identificar si los sistemas de discontinuidades son paralelos a la labor o perpendiculares a esta; una labor con avance paralelo a un sistema de discontinuidades será critica a diferencia de una labor que avanza perpendicularmente ya que en la primera se generan cuñas de mayor volumen; el volumen o tamaño de la cuña permitirá determinar la cantidad de sostenimiento requerido para estabilizar la cuña. Se debe asegurar la adherencia adecuada entre el elemento estabilizador y el macizo rocoso para que el elemento estabilizador trabaje a su máxima capacidad.

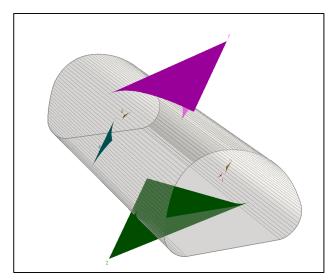


Ilustración 26: Vista de cuñas en 3D

2.7.3 PHASE2

Es un software que se emplea en la toma de decisiones relacionadas al diseño minero y secuencia de minado, diseño y dimensionamiento de estructuras tales como accesos, pilares, sostenimiento, entre otros. Valida la resolución por el Método de los Elementos Finitos (MEF), y permite simular el comportamiento, rocas y otros materiales estructurales que se ajustan a modelos elásticos, elastoplàsticos y viscoelàsticos, en dos dimensiones, para la resolución de problemas tenso-deformacionales a los que el macizo rocoso se encuentra sometido a raíz de cargas debido a su propio peso, fuerzas externas, tensiones in situ, cambio de temperatura, fuerzas dinámicas, etc. Se requiere para determinar las tensiones y deformaciones actuantes en el macizo (Ilustración 27).

El MEF consiste en discretizar el macizo rocoso que rodea una excavación en pequeños elementos (triángulos o rectángulos en el caso de análisis bidimensionales) conectados a través de nodos (vértices de los elementos). En el proceso se calculan los desplazamientos en los nodos y luego se calculan las tensiones en el interior de los elementos. Es por tanto una aproximación de los valores de una función a partir del conocimiento de un número determinado y finito de puntos.

Sin embargo, es un método que no proporciona la solución "exacta" a un problema dado, sino que, posibilita obtener una solución aproximada y se debe complementar el análisis con el resto de técnicas de diseño de obras subterráneas.

Ilustración 27: Esfuerzos actuantes

CAPITULO III: CLASIFICACION GEOMECANICA

3.1 NIVEL 2429 Y 2433

Esta basal está dividida en tres sectores, el primero, el N2429, tiene su acceso por Rampa 2372 Central y cuenta con 160 metros al NO y 30 metros SE mapeados en su totalidad. Otro sector de la basal tiene una cota diferente, N2433, con acceso por Rampa Central 2372, se bifurca hacia el NO con una longitud de 60 metros los cuales no fueron mapeados ya que contaba con una barrera física de material fragmentado que impedía el paso por cuestiones de seguridad; y hacia el SE con una longitud de 270 metros los cuales fueron mapeados en su totalidad. Por Rampa 2372SE se accede al tercer sector, el N2429, en ese momento se estaba trabajando en su desarrollo para conectar con el extremo SE del N2433 e ir corrigiendo de manera progresiva la cota, para esta parte de la basal el mapeo se llevó en paralelo con el desarrollo por lo que se mapearon 70 metros al SE y 40 metros al NO. Si bien hay una pequeña diferencia de cotas, estos niveles forman parte una sola basal.

Esta, al igual que el resto de las basales de estudio, ya se encuentra sostenida en algunos tramos por pernos Split Set o Helicoidales más mallas electro soldadas. Sin embargo, en los sectores donde el mapeo se llevó en conjunto con el desarrollo, si se recomendó el sostenimiento según los resultados obtenidos en gabinete y siguiendo las recomendaciones del personal a cargo del área Geomecánica

En términos generales la basal se encuentra en buen estado, bien ventilada y con poca presencia de agua, en su mayoría debido a filtraciones de niveles superiores producto de la perforación.

Teniendo en cuenta la conceptualización de los parámetros geomecánico descriptos en el Capítulo 2, y el procedimiento escogido para el mapeo explicado en el Anexo I, se realizó la determinación de los parámetros geomecánicos y la clasificación del macizo según las clasificaciones RMR de Bieniawski, Índice GSI y Q de Barton. Para esto se dividió los 570 m mapeados en progresivas, por lo general cada 10 metros, y para facilitar el análisis las mismas se agruparon en tramos, obteniendo un total de 9 tramos.

3.1.1 PARÁMETROS GEOMECÁNICOS DEL MACIZO

Los parámetros de rotura de Hoek-Brown y de Mohr – Coulomb de cada uno de los materiales presentes en las labores de estudio, están detallados en la Tabla 9 separados por tramos y materiales. Estos parámetros serán considerados iguales para los tres niveles, ya que no hay una gran diferencia entre ellos. En la Ilustración 28 se encuentra la descripción de cada uno.

- **CAJAS**: se refiere a la roca de caja presente en los sectores de estudio, se trata de roca Monzonita con un USC promedio >150 Mpa que va variando según el grado de alteración presente.
- ALTERACIÓN: se refiere a la roca de contacto entre la veta y la caja, tiene una alteración argílica moderada a avanzada con un USC promedio <80 Mpa.
- **ORE**: corresponde a la veta negra en su mayoría, compuesta por óxidos e hidróxidos de manganeso, carbonatos negros, carbonato blanco y cuarzo transparente y tiene un USC promedio <113 Mpa

. ,	·											
						NIVE	EL 2429 Y 2433	3				
TRAMO I y IV												
					Criterio He Brouwn	oeck-	Crite Could	erio Mohr- emb		Parái	metros de R	oca
Material	UCS	GSI	mi	mb	S	а	Cohesión	Angulo de Fricción	Compresive		Modulum of Deformation	
Roca de caja Monzonita	230	59	25	2,17	0,002	0,50	1,095	64.15	-0,212	10,105	45,335	10072 ,82
TRAMO II y III												
				Criteri	o Hoeck-Br	ouwn	Criterio Moh	n-Coulomb		Parár	metros de R	oca

					Criteri	o Hoeck-Br	ouwn	Criterio Moh-Coulomb		Parámetros de Roca			
Material	ı	JCS	GSI	mi	mb	S	a	Cohesión	Angulo de Fricción	Tensile Strength	Uniaxial Compresive Strenght	Global Strength	Modulum of Deformation
Roca de caja, Monzonita	1	190	48	25	1,13	4,00E-04	0,50	0,554	59,84	-0,064	3,511	26,316	5347,5125
Alteración	2 100		32	25	0,43	3,00E-05	0,52	0,244	48	-0,008	0,474	7,951	2128,8
Veta ORE		113	38	25	0,62	1,00E-04	0,51	0,309	52,15	-0,015	0,912	11,181	3007,12

TRAMO V y VI													
					Criterio Hoeck- Brouwn			Criterio Mohr- Coulomb		Parámetros de Roca			
Material	U	CS .	GSI	Mi	mb	S	a	Cohesión	Angulo de Fricción	Tensile Strength	Uniaxial Compresive Strenght	Global Strength	Modulum of Deformation
Roca de caja, Monzonita		180	52	25	1.43	7,00E-04	0,50	0,64	60,95	-0,087	4,574	28,37	6732, 11
Alteración		79	32	25	0,43	3,00E-05	0,52	0,225	46,27	-0,006	0,374	6,281	1892, 19
Veta ORE		113	41	25	0,74	1,00E-04	0,51	0,339	53,62	-0,02	1,177	12,403	3573, 97

Т	RAMO VII y VIII													
						Criterio Hoeck- Brouwn			Criterio Mohr- Coulomb		Parámetros de Roca			
	Material		UCS	GSI	mi	mb	S	а	Cohesión	Angulo de Fricción	Tensile Strength	Uniaxial Compresive Strenght	Global Strength	Modulum of Deformation
	Roca de caja Monzonita	1	178	50	25	1,27	5,00E-04	0,50	0,582	60,2	-0,072	3,859	26,305	6000
	Alteración	2	40	26	25	0,30	1,30E-05	0,52	0,145	37,3	-0,002	0,106	2,498	953,19
	Veta ORE	3	153	36	25	0,55	1,00E-04	0,51	0,326	53,21	-0,017	1,038	14,101	2680,1

Tabla 9: Parámetros Geomecánico de la Roca

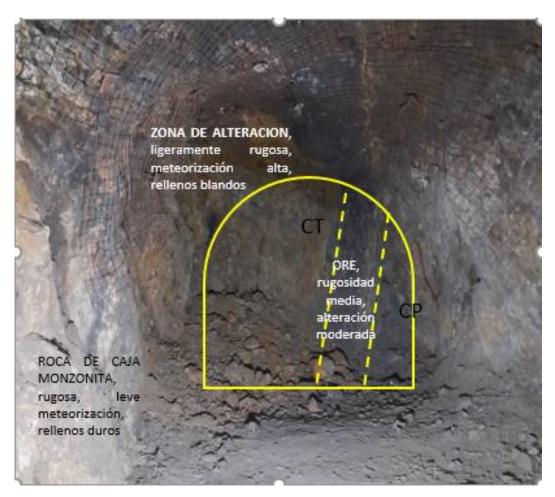


Ilustración 28: Imagen de los niveles

3.1.2 CLASIFICACION GEOMECANICA POR TRAMOS

Para la clasificación geomecánica se utilizó los parámetros RMR, GSI y Q de Barton. En los cuadros siguientes se muestran de manera sintetizada los valores obtenidos con cada criterio, agrupados por tramos y además los planos correspondientes a cada uno para una mejor visualización y localización.

TRAMO 1: este tramo pertenece al acceso del N2429, el RMR corregido promedio es de 61,25 lo que permite clasificar al macizo como **CLASE II - Roca Buena**, según GSI es de **CLASE B** y según Barton la calidad de la roca es **MEDIA**, lo que indica que en términos generales la calidad es buena.

TRAMO 2: en este caso el tramo corresponde al N2429 que va desde la progresiva 20 SE a la progresiva 50 NO, según el valor del RMR corregido promedio de 48,2 la roca es **CLASE III – REGULAR**, según GSI es **CLASE C** y según Barton la calidad es **MALA**.

	Tramo Pr.		RMR	(Clasificaci	ón RMR		lasificación GSI	Clasificación Q de Bar- ton		
Tramo	Pr.	RMR	Ajustado	Clasificación	RMR	Clasificación	GSI	Índice GSI	Q/Tramo	Clasificación	
1	466	73,5	63,5	BUENA	C4 25	DUENIA	FC 2F	F/R,	7.01	NAFRIA	
1	ACC	69	59	REGULAR	61,25	BUENA	56,25	MF/B, FP/MB	7,01	MEDIA	
	20 SE	60,8	48,8	REGULAR							
	20 SE	47,5	35,5	MALA							
	10	63,5	52,5	REGULAR							
2	NO	56	45	REGULAR	48,2	REGULAR	43,2	F/M, MF/R,	2,40	MALA	
2	20	72	60	REGULAR	46,2	REGULAR	43,2	FP/B	2,40	IVIALA	
	NO 50	69	58	REGULAR							
		46	34	MALA							
	NO	63	52	REGULAR							

Tabla 10: Clasificación Geomecánica - Tramo 1 y 2 N2429 SE y NO

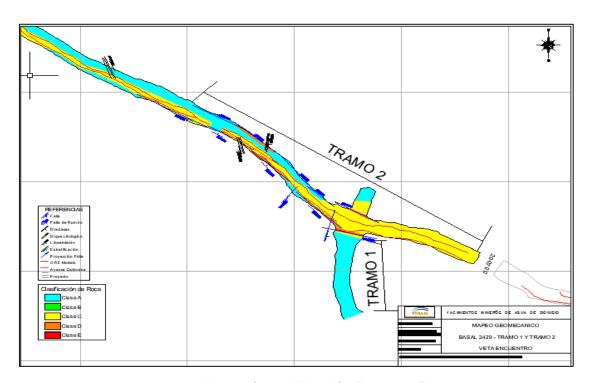


Ilustración 29: Ubicación Tramo 1 y Tramo 2

TRAMO 3: corresponde al Nivel 2429 y va desde la progresiva 70 a la 150 hacia el NO. El RMR corregido promedio obtenido permite clasificar al macizo como **CLASE III – REGULAR**, GSI indica que es una roca de **CLASE C** mientras que según Barton la calidad es **MALA**.

			RMR	Clasi	ficación	RMR	Clasif	icación GSI	Clasificaci	ón Q de Barton
Tramo	Pr.	RMR	Ajustado	Clasificación	RMR	Clasificación	GSI	Índice GSI	Q	Clasificación
	70NO	61	50	REGULAR						
	70110	63	52	REGULAR						
	90NO	67	56	REGULAR		REGULAR	43,4		2 11	
3	90110	59	48	REGULAR	48,4			F/M,		BAALA
3	130NO	68	57	REGULAR	40,4			MF/R, FP/B	2,11	MALA
	130110	48,5	36,5	MALA						
	150NO -	49	38	MALA						
		61	50	REGULAR						

Tabla 11: Clasificación Geomecánica - Tramo 3 Nivel 2429 NO

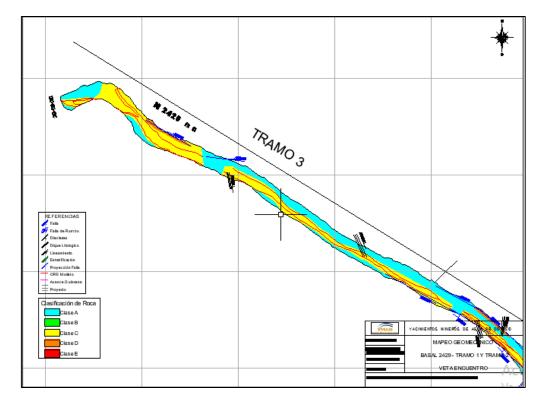


Ilustración 30: Ubicación Tramo 3

TRAMO 4: corresponde al acceso al Nivel 2433. El valor del RMR promedio es de 60 que clasifica al macizo como **CLASE II – BUENA**, GSI lo cataloga como **CLASE B** y Barton sugiere que es de calidad **MEDIA**.

TRAMO 5: corresponde a las progresivas 10 a 110 del Nivel 2433 SE. Se observa un RMR promedio de 46,3 según la clasificación de Bieniawski el macizo es **de CLASE III – REGULAR**, de acuerdo a GSI es de **CLASE C** y Barton indica que es de calidad **MALA**.

			RMR	Clasi	ficación	RMR	Cla	sificación GSI	Clasifica	ción Q de Barton
Tramo	Pr.	RMR	Ajustado	Clasificación	RMR	Clasificación	GSI	Índice GSI	Q	Clasificación
	20ACC	70,5	64,5	BUENA						
4	ZUACC	68,5	60,5	BUENA	٠,	DUENIA	FF 2	E/D 84E/D ED/84D	6.75	MATERIA
4	30ACC	58	53	REGULAR	60	BUENA	55,3	F/R, MF/B, FP/MB	6,75	MEDIA
	SUACC	68	63	BUENA						
	10SE	56	45	REGULAR						
	20SE	53	41	REGULAR						
	30SE	62,5	51,5	REGULAR						
5	60SE	63	51	REGULAR	46,3	REGULAR	41,3	F/M, MF/R, FP/B	1,84	MALA
	80SE	70	59	REGULAR						
	9 SE	44	33	MALA						
	110SE	54,5	43,5	REGULAR						

Tabla 12: Clasificación Geomecánica - Tramo 4 y 5, Nivel 2433 SE

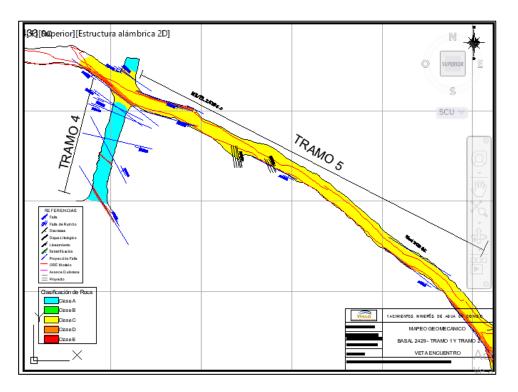


Ilustración 31: Ubicación Tramo 4 y 5

TRAMO 6: corresponde a las progresivas que van desde la 130 a la 210 del Nivel 2433 SE. En este tramo se observa un RMR promedio de 50 según la clasificación de Bieniawski el macizo es **de CLASE III – REGULAR**, de acuerdo a GSI es de **CLASE C** y Barton indica que es de calidad **MALA**.

TRAMO 7: corresponde a las progresivas 230 a 270 del Nivel 2433. Similar al Tramo 6, con un RMR de 48,8 se clasifica como **CLASE III – REGULAR**, según GSI es de **CLASE C** y Barton la señala como calidad **MALA**.

Ambos tramos se muestran en la Tabla 13.

			RMR	Clasi	ificación	RMR	Clas	ificación GSI	Clasificación Q de Barton	
Tramo	Pr.	RMR	Ajustado	Clasificación	RMR	Clasificación	GSI	Índice GSI	Q	Clasificación
	130SE	60,5	48,5	REGULAR						
	1303E	68	57	REGULAR						
6	170SE	55	43	REGULAR	₹ 50	REGULAR	44,9	F/M,MF/R,FP/B	2,18	MALA
	210SE	61	50	REGULAR						
	21036	63	51	REGULAR						
	230SE	51	40	MALA						
7	2303E	67	56	REGULAR	48,8	REGULAR	43,8	F/M,MF/R,FP/B	2.07	MALA
,	270SE -	64	52	REGULAR	40,0	REGULAR	43,8	r/ivi,ivir/K,FP/B	2,07	IVIALA
		58	47	REGULAR						

Tabla 13: Clasificación Geomecánica - Tramo 6 y 7, Nivel 2433 SE

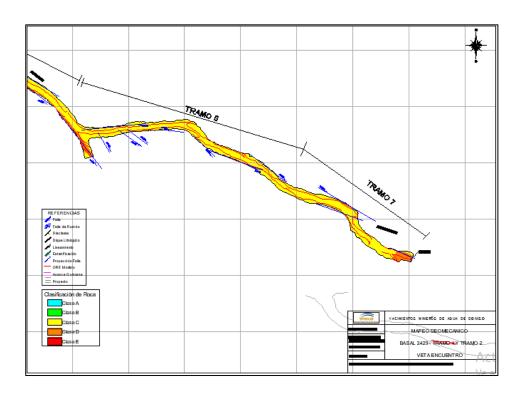


Ilustración 32: Ubicación Tramo 6 y 7

TRAMO 8: corresponde a las progresivas que van desde la 30 a la 70 SE del Nivel 2429 con acceso por Rampa 2372 SE. En este tramo se observa un RMR promedio de 40, según la clasificación de Bieniawski el macizo es de CLASE IV—MALA, de acuerdo a GSI es de CLASE D y Barton indica que es de calidad MUY MALA.

TRAMO 9: corresponde a las progresivas 10 a 40 NO del Nivel 2429 con acceso por Rampa 2372 SE. Tiene un RMR promedio de 40 y se clasifica como **CLASE IV – MALA**, según GSI es de **CLASE D** y Barton la señala como calidad **MUY MALA**.

			RMR	Clasi	ficación	RMR	Cla	asificación GSI	Clasificación Q de Barton		
Tramo	Pr.	RMR	Ajustado	Clasificación	RMR	Clasificación	GSI	Índice GSI	Q	Clasificación	
		62	50	REGULAR							
	30 SE	49	37	MALA							
8		45	33	MALA	40.0	MALA	35,8	MF/M,FP/R,FP/M	0.01	MUY MALA	
8		48	36	MALA	40,0	IVIALA	33,6	IVIF/IVI,FF/K,FF/IVI	0,91	WIOT WALA	
	70 SE	60,5	48,5	REGULAR							
		52,5	40,5	REGULAR							
	10 NO	60	48	REGULAR							
9	10 NO 30 NO 40 NO	54	42	REGULAR	40	04010	35	84E/84 ED/D ED/84	0.70	BALLY BAALA	
9		48	36	MALA	40	MALA	35	MF/M,FP/R,FP/M	0,78	MUY MALA	
		46	34	MALA							

Tabla 14: Clasificación Geomecánica - Tramo 8 y 9, Nivel 2429

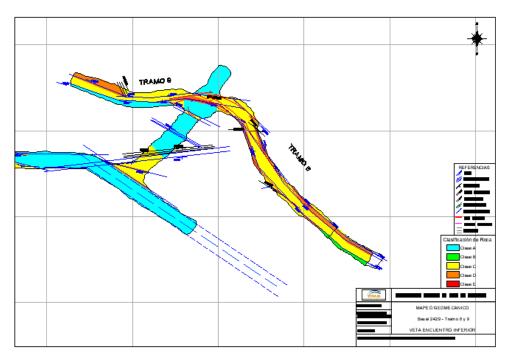
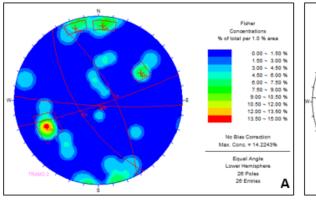


Ilustración 33: Ubicación Tramo 8 y 9

3.1.3 DATOS ESTRUCTURALES (DIACLASAS Y FALLAS) DOMINANTES DEL SECTOR

Como se mencionó en el Capítulo 2, las discontinuidades generalmente se presentan en sets de familias, con orientación y características más o menos homogéneas. La orientación, definida por su rumbo y dirección de buzamiento, determina su posición en el espacio. Para un mejor análisis y siguiendo la misma metodología aplicada en la sección anterior, la división por tramos, los resultados se agruparon de la siguiente manera: Los cuadros resumen donde se muestran los datos cargados y las familias de discontinuidades que se pudieron determinar con la aplicación del software DIPS.

• La Figura "A" muestra las zonas de concentración de discontinuidades en una escala de colores según la frecuencia de los datos cargados.



 La Figura "B" grafica las familias de discontinuidades determinadas, a partir de la figura anterior, proporcionando a su vez un detalle del DIP/DIP DIRECTION de estas familias.

TRAMO 2: corresponde a los primeros 50 metros del N2429 NO.

N°	Identificacion	Dip	Dip Dir
1	F	79	101
2	F	51	102
3	F	61	48
4	F	78	26
5	F	85	203
6	F	80	9
7	F	71	237
8	F	70	56
9	F	60	51
10	Familia de diaclasas	69	63
11	Familia de diaclasas	84	162
12	Familia de diaclasas	83	183
13	Familia de diaclasas	62	237

Tabla 15: Dip y Dip Direction correspondientes al Tramo 2

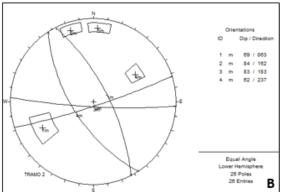


Ilustración 34: A) Concentración de discontinuidades enmarcadas en campos, B) Representación gráfica de principales familias de diaclasas - TRAMO 2

TRAMO 3: corresponde a los datos relevados en las progresivas 70 a 130 del N2429 NO.

N°	Identificacion	Dip	Dip Dir
1	F	58	16
2	F	71	35
3	familia de diaclasas	71	195
4	familia de diaclasas	80	10
5	familia de diaclasas	75	55
6	familia de diaclasas	61	126
7	familia de diaclasas	89	351

Tabla 16:Dip y Dip Direction correspondientes al Tramo 3

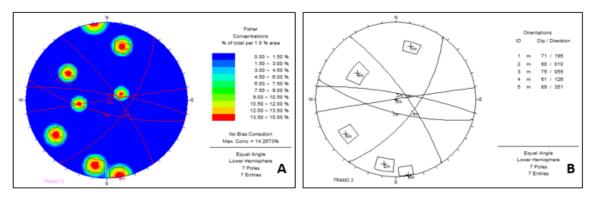
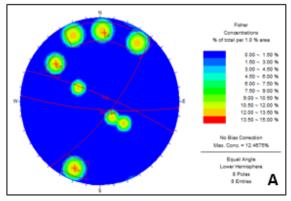



Ilustración 35: A) Concentración de discontinuidades enmarcadas en campos, B) Representación gráfica de principales familias de diaclasas- TRAMO 3

TRAMO 4: corresponde a las estructuras mapeadas en el acceso al Nivel 2433.

N°	Identificacion	Dip	Dip Dir
11	lacitaticación	ыр	ווט קוט
1	F	81	30
2	F	63	184
3	F	78	74
4	F	81	44
5	F	82	108
6	familia de diaclasas	81	22
7	familia de diaclasas	79	184
8	familia de diaclasas	71	129

Tabla 17: Dip y Dip Direction correspondientes al Tramo 4

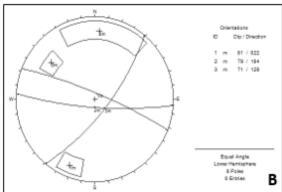
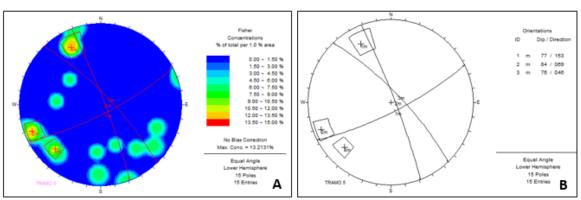


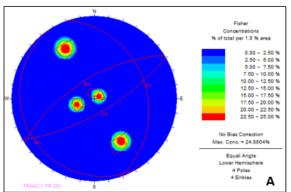
Ilustración 36: A) Concentración de discontinuidades enmarcadas en campos, B) Representación gráfica de principales familias de diaclasas- TRAMO 4

TRAMO 5: corresponde a las progresivas que van de la 10 a la 80 del Nivel 2433 SE

N°	Identificacion	Dip	Dip Dir
1	F	84	210
2	F	60	56
3	F	84	42
4	F	74	155
5	F	89	205
6	F	62	64
7	F	70	49
8	familia de diaclasas	77	214
9	familia de diaclasas	84	69
10	familia de diaclasas	76	46

Tabla 18: Dip y Dip Direction correspondientes al Tramo 5




Ilustración 37: A) Concentración de discontinuidades enmarcadas en campos, B) Representación gráfica de principales familias de diaclasas- TRAMO 5

TRAMO 6: corresponde a las progresivas 130 a 210 del N2433 SE.

N°	Identificacion	Dip	Dip Dir
1	F	71	53
2	F	82	241
3	F	59	193
4	F	81	222
5	F	65	57
6	F	81	32
7	F	88	214
8	F	60	291
9	F	68	13
10	familia de diaclasas	69	84
11	familia de diaclasas	54	316
12	familia de diaclasas	85	193

Tabla 19: Dip y Dip Direction Correspondientes al Tramo 6

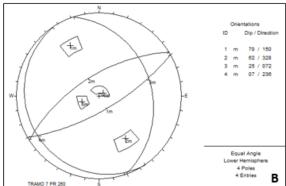
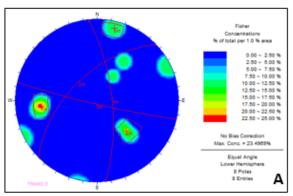



Ilustración 38: A) Concentración de discontinuidades enmarcadas en campos, B) Representación gráfica de principales familias de diaclasas- TRAMO 6

TRAMO 7: corresponde a la progresiva 260 del N2433 SE.

N°	Identificacion	Dip	Dip Dir
1	familia de diaclasas	70	150
2	familia de diaclasas	62	328
3	familia de diaclasas	25	72
4	familia de diaclasas	7	236

Tabla 20:Dip y Dip Direction Correspondientes al Tramo 7

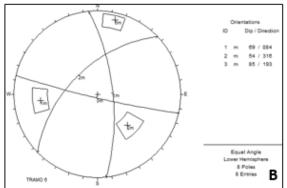


Ilustración 39: A) Concentración de discontinuidades enmarcadas en campos, B) Representación gráfica de principales familias de diaclasas- TRAMO 7

TRAMO 8 y TRAMO 9: corresponde a las progresivas 10 a la 40 NO y a las progresivas 30 a 70 SE del N2429 con acceso por Rampa 2372 SE. En estos tramos no se levantaron datos de Dip y Dip Direction de diaclasas, pero sí de fallas. A continuación, se muestra en un cuadro los datos relevados.

N°	Identificacion	Dip	Dip Dir
1	F	74	198
2	F	78	347
3	F	78	347
4	F	70	22
5	F	68	29
6	F	76	37
7	F	82	222
8	F	71	69
9	F	78	70
10	F	74	42
11	F	78	48
12	F	82	46
13	F	73	30
14	F	88	30

Tabla 21: Dip y Dip Direction Correspondientes al Tramo 8 y Tramo 9

3.1.4 ANALISIS DE CUÑAS CON SOFTWARE UNWEDGE

Una vez obtenidas las familias de diaclasas de cada Tramo se procede al análisis en detalle de las mismas mediante la aplicación del software "UNWEDGE" que permite graficar la cuña máxima que puede generarse teniendo en cuenta los planos de discontinuidades y las dimensiones de la excavación.

Para la simulación y análisis de cuñas se tuvo en cuenta la sección de la labor que se muestra en la llustración 41, estructuras mapeadas y familias de diaclasas obtenidas del ítem anterior.

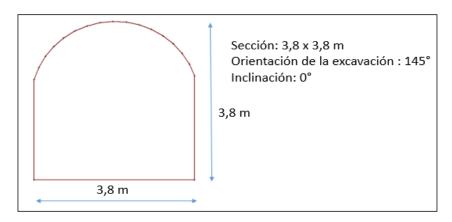


Ilustración 40: Sección y características de la labor

Los resultados obtenidos se muestran de acuerdo al siguiente detalle:

- En la imagen A se muestran las cuñas presentes y su descripción, con el peso en t y el factor de seguridad.
- En la Imagen B se muestra la cuña sostenida y la descripción de las características.

TRAMO 2: **Análisis 1 progresiva 50**: se observa la cuña 8 de color verde oscuro en corona que tiene un peso de 61,17 t y un factor de seguridad 0.

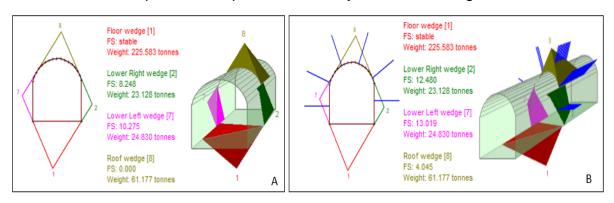


Ilustración 41: A) Cuñas presentes en Tramo 2 Progresiva 50 - B) Simulación de sostenimiento con pernos Helicoidales

TRAMO 3: **Análisis 2 Pr 150**: se observan cuñas estables o de pequeño porte.

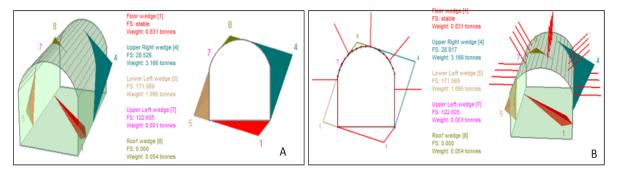


Ilustración 42:A) Cuñas presentes en Tramo 3 Progresiva 150 - B) Simulación de sostenimiento con

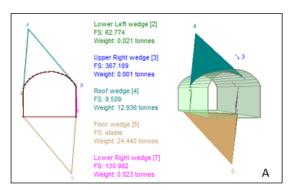

TRAMO 4: **Análisis 3 Pr 30**: se observa la cuña 4 de color azul, de 7 t de peso y con un factor de seguridad de 3,8.

Ilustración 43:A) Cuñas presentes en Tramo 4 Progresiva 30 - B) Simulación de sostenimiento con pernos Helicoidales

TRAMO 5: Análisis 4 Pr 20: se observa la cuña 4 en corona de 12 t de peso y factor de seguridad de 9.

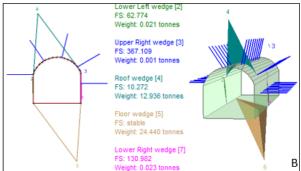
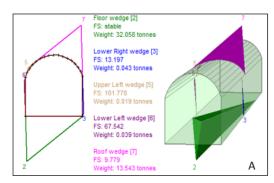



Ilustración 44: A) Cuñas presentes en Tramo 5 Progresiva 20 - B) Simulación de sostenimiento con pernos Helicoidales

Análisis 5 Pr 30: se observa la cuña 7 en corona de 13 t de peso y factor de seguridad de 9.

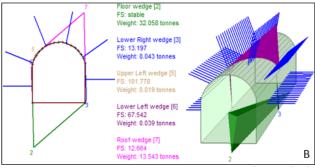
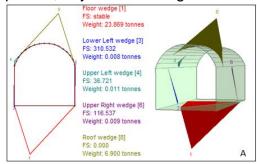



Ilustración 45:A) Cuñas presentes en Tramo 5 Progresiva 30 - B) Simulación de sostenimiento con pernos Helicoidales

TRAMO 6: Análisis 6 Pr 130: se observa la cuña 7 en corona de color verde, peso 6,9 t y factor de seguridad de 0.

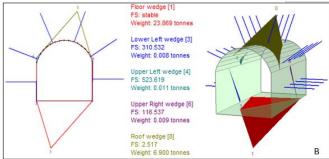


Ilustración 46:Cuñas presentes en Tramo 6 Progresiva 130 - B) Simulación de sostenimiento con pernos Helicoidales

TRAMO 8: Análisis 7 Pr 30: se observa cuña 8 de color verde, 5 t de peso y factor de seguridad 0.

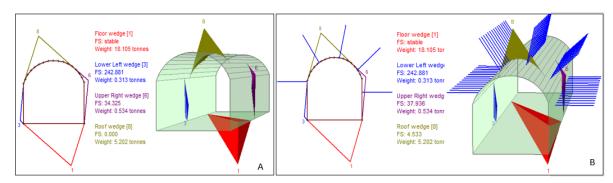


Ilustración 47: Cuñas presentes en Tramo 8 Progresiva 30 - B) Simulación de sostenimiento con pernos Helicoidales

En la Tabla 23 siguiente se muestra un resumen de las características de las cuñas analizadas, pesos y factor de seguridad sin sostenimiento y con sostenimiento de los Niveles 2429 y 2433.

El sostenimiento se simulo con pernos Split Set color rojo de 1,8 m de longitud y pernos Helicoidales color azul de 2,10 m de longitud con una grilla de 1,3 x 1,3.

			DIP	SIN SOSTEN	IIMIENTO	CON SOSTEI	VIMIENTO
TRAMO	ANALISIS	DIP	DIRECTION	PESO (tn)	FACTOR DE SEGURIDAD	PESO (tn)	FACTOR DE SEGURIDAD
		60	51				
2	Analisis 1	70	31	61,17	0	61,17	4,04
2	Allalisis 1	62	235	01,17	U	01,17	4,04
		84	106				
		75	35				
3	Analisis 2	71	195	0,058	0	0,058	1,5
3	Andrisis 2	80	10	0,030	Ŭ	0,030	1,5
		75	55				
		82	108			7,53	
4	Analisis 3	81	22	7,53	3,82		5,11
7	7.11.011313.5	79	184	,,55			
		71	129				
	Analisis 4	89	205	12,9	9,5	12,9	
		77	214				10,27
		84	69				10,27
5		76	46				
3		62	64				
	Analisis 5	77	214	13,54	9,7	13,54	12,68
	Andrisiss	84	69	13,54	3,,	13,34	12,00
		76	46				
		69	84				
6	Analisis 6	54	316	6,9	0	6,9	2,51
U	Andrisis	85	193	0,5	Ŭ	0,5	2,31
		81	222				
		82	222			5,28	4,53
8	Analisis 7	71	69	5,28	0		
		76	37				

Tabla 22: Resumen de Características de cuñas analizadas N2429 y 2433

3.1.5 DETERMINACION DEL SOSTENIMIENTO

En base a la calidad del macizo rocoso obtenida en la zona de estudio, y con la aplicación de la clasificación RMR y la correlación con Q y GSI, se realiza la

recomendación de sostenimiento. Los cálculos aplicados para la determinación de mismo son los descriptos en la sección 2.5 del Capítulo 2.

SOSTENIMIENTO SEGÚN CLASIFICACION RMR

En la Tabla 24 se muestran los valores de calidad de roca y el sostenimiento recomendado a aplicar según cada caso. Además, en la descripción de cada tramo, se presenta el claro sin sostener para cada RMR dado.

				CA	LCULO DE SOST	ENIMIENTO		
Tramo	Ubicación	Pr.	RMR	Ancho de la Labor (b)m	Altura de Carga HP(m)	Densidad δ (t/m³)	Peso de Carga de Roca W (t/m²)	Sostenimiento RMR
1	Acc N2429	10 a 30	61	3,8	1,47	2,7	3,98	Bulonado eventual
2	N2429 NO	10 a 50	48	3,8	1,97	2,7	5,31	Bulonado Sistemático, espaciado 1,5X1,5 y Malla Electrosoldada
3	N2429 NO	70 a 150	50	3,8	1,90	2,7	5,14	Bulonado Sistemático, espaciado 1,5X1,5 y Malla Electrosoldada
4	Acc N2433	20 a 30	60	3,8	1,51	2,7	4,08	Bulonado eventual
5	N2433SE	10 a 110	46	3,8	2,04	2,7	5,51	Bulonado Sistemático, espaciado 1,5X1,5 y Malla Electrosoldada
6	N2433 SE	130 a 210	50	3,8	1,90	2,7	5,14	Bulonado Sistemático, espaciado 1,5X1,5 y Malla Electrosoldada
7	N2433 SE	230 a 270	49	3,8	1,95	2,7	5,26	Bulonado Sistemático, espaciado 1,5X1,5 y Malla Electrosoldada
8	N2429 SE	30 a 70	40	3,8	2,28	2,7	6,16	Bulonado sistemático 1,3X1,3 Malla Electrosoldada + Shotcrete
9	N2429NO	10 a 40	40	3,8	2,28	2,7	6,16	Bulonado sistemático 1,3X1,3 Malla Electrosoldada + Shotcrete

Tabla 23: Calculo de Sostenimiento según clasificación RMR

TRAMO 1 Y TRAMO 4: estos tramos corresponden a los accesos a los niveles, la clasificación RMR es de Roca Buena por lo que el sostenimiento recomendado es pernos de anclaje eventuales en caso de ser necesario. El claro sin sostener para este tipo de roca es de 25 m.

TRAMO 2, TRAMO 3, TRAMO 5, TRAMO 6 Y TRAMO 7: se clasifican según RMR como Roca Regular, el sostenimiento recomendado es de empernado sistemático de 1,5 x 1,5 m, más malla electrosoldada. El claro sin sostener para RMR de 50 es de 21 m y para un RMR de 46 es de 9 m.

TRAMO 8 Y TRAMO 9: se clasifican según RMR como Roca Mala, el sostenimiento recomendado es de empernado sistemático de 1,3 x 1,3 m más malla electrosoldada y más Shotcrete con fibra de 5 cm de espesor. El claro sin

sostener para este tipo de roca es de 3 m, es decir que el sostenimiento debe ir inmediatamente luego de una voladura.

SOSTENIMIENTO SEGÚN CLASIFICACION DE BARTON

A modo de comparación se realiza el cálculo de sostenimiento según la clasificación de Barton, en la Tabla 25 se muestran los resultados obtenidos.

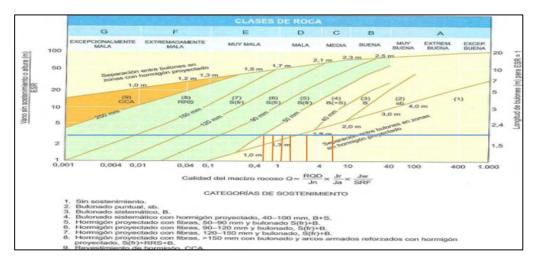


Ilustración 48: Grafico de Barton para Sostenimiento; Ingeniería Geológica de Luis González de Vallejos

				SOSTENIM	IENTO SEGÚN Q	DE BARTO	ON	
Tramo	Ubicación	Pr.	Q de Barton	ESR	Altura de la Labor (m)	De	Categoría de sostenimiento	Sostenimiento
1	Acc N2429	10 a 30	7,01	2	3,8	1,9	1	Sin Sostenimiento
2	N2429 NO	10 a 50	2,40	2	3,8	1,9	1	Sin Sostenimiento
3	N2429 NO	70 a 150	2,11	2	3,8	1,9	1	Sin Sostenimiento
4	Acc N2433	20 a 30	6,75	2	3,8	1,9	1	Sin Sostenimiento
5	N2433 SE	10 a 110	1,84	2	3,8	1,9	4	Bulonado sistemático 1,3 x 1,3 más shotcrete
6	N2433 SE	130 a 210	2,18	2	3,8	1,9	1	Sin Sostenimiento
7	N2433 SE	230 a 270	2,07	2	3,8	1,9	1	Sin Sostenimiento
8	N2429 SE	30 a 70	0,91	2	3,8	1,9	4	Bulonado sistemático 1,3 x 1,3 más shotcrete
9	N2429 NO	10 a 40	0,78	2	3,8	1,9	4	Bulonado sistemático 1,3 x 1,3 más shotcrete

Tabla 24: Calculo de Sostenimiento según clasificación Q de Barton

TRAMO 1 AL TRAMO 7: estos tramos se clasifican como Roca Regular a Mala y con una categoría de sostenimiento 1, por lo tanto, la recomendación según Barton es Sin Sostenimiento. A excepción del **TRAMO 5** que es de categoría 4, por lo tanto, se pide empernado sistemático en grilla 1,3 x 1,3 m más Shotcrete.

TRAMO 8 Y TRAMO 9: estos tres tramos, según la clasificación de Barton pertenecen a la categoría de sostenimiento tipo 4, por lo que será necesario empernado sistemático de 1,3 x 1,3 m más shotcrete de 5 cm a 10 cm de espesor.

SOSTENIMIENTO SEGÚN CLASIFICACION GSI

Utilizamos la clasificación GSI para determinar el sostenimiento de manera comparativa con los dos métodos de clasificación descriptos anteriormente. En la Ilustración 6 del Capítulo 2 se muestra la tabla GSI utilizada por la empresa donde se distinguen los distintos tipos de calidad de roca, los cuales se denominan con letras y colores característicos, acompañados del sostenimiento a aplicar según cada caso.

	SOSTENIMIENTO SEGÚN GSI								
Tramo	Ubicación	Pr.	GSI	GSI	Sostenimiento				
1	Acc N2429	10 a 30	56	F/R, MF/B, FP/MB	Bulones Split Set sistemáticos 1,3 x 1,3 m + malla				
2	N2429 NO	10 a 50	43	F/M, MF/R, FP/B	Bulones Split Set, Helicoidales sistemáticos 1,3 x 1,3 m + malla				
3	N2429 NO	70 a 150	43	F/M, MF/R, FP/B	Bulones Split Set, Helicoidales sistemáticos 1,3 x 1,3 m + malla				
4	Acc N2433	20 a 30	55	F/R, MF/B, FP/MB	Bulones Split Set sistemáticos 1,3 x 1,3 m + malla				
5	N2433 SE	10 a 110	41	F/M, MF/R, FP/B	Bulones Split Set, Helicoidales sistemáticos 1,3 x 1,3 m + malla				
6	N2433 SE	130 a 210	45	F/M, MF/R, FP/B	Bulones Split Set, Helicoidales sistemáticos 1,3 x 1,3 m + malla				
7	N2433 SE	230 a 270	44	F/M, MF/R, FP/B	Bulones Split Set, Helicoidales sistemáticos 1,3 x 1,3 m + malla				
8	N2429 SE	30 a 70	36	MF/M, FP/R, FP/M	Shotcrete 5cm + malla con bulones Helicoidales. 1,3 x 1,3 m				
9	N2429 NO	10 a 40	35	MF/M, FP/R,FP/M	Shotcrete 5cm + malla con bulones Helicoidales. 1,3 x 1,3 m				

Tabla 25: Cálculo de Sostenimiento según Clasificación GSI

TRAMO 1 Y TRAMO 4: según GSI corresponde a una roca tipo B o A, por lo que el sostenimiento a aplicar será de manera eventual con pernos Split Set y una distribución de 1,3 x 1,3 m.

TRAMO 2, TRAMO 3, TRAMO 5, TRAMO 6 Y TRAMO 7: estos sectores corresponden a una roca tipo C por lo que la recomendación de sostenimiento será de empernado sistemático con Split Set en una distribución de 1,3 x 1,3 m, más malla electrosoldada.

TRAMO 8 Y TRAMO 9: estos sectores corresponden a una roca tipo D por lo que el sostenimiento recomendado será de shotcrete con fibra (SHFP), bulones Helicoidales o Swellex con una distribución de 1,3 x 1,3 m más malla electrosoldada.

ESPACIADO DE PERNOS O BULONES

A continuación, en la Tabla 27, se muestran los espaciamientos recomendados según el tipo de pernos a emplear. En el presente estudio se tienen en cuenta los tres tipos con los que cuenta la empresa. Las fórmulas empleadas y la descripción de las características de los distintos pernos se encuentran en el Capítulo 2.

	Tn	Dp
SS (Tn)	6	4,62
He (Tn)	10	7,69
Sw (Tn)	12	9,23

• SS: Perno Split Set

• He: Perno Helicoidal

Sw: Perno Swellex

Tramo	Pro	RMR	Ancho de la Labor (b)m	Altura de Carga HP(m)	Densidad δ (Ton/m³)	Factor de Seguridad	Espaciamiento Penos SS (S) m	Espaciamiento Penos He (S) m	Espaciamiento Penos Sw (S) m
1	10 a 30	61		1,47			1,06	1,37	1,50
2	10 a 50	48		1,97			0,92	1,18	1,29
3	70 a 150	50		1,90			0,93	1,20	1,32
4	20 a 30	60		1,51			1,04	1,35	1,48
5	10 a 110	46	3,8	2,04	2,8	1,30	0,90	1,16	1,27
6	130 a 210	50		1,90			0,93	1,20	1,32
7	230 a 270	49		1,95			0,92	1,19	1,30
8	30 a 70	40		2,28			0,85	1,10	1,20
9	10 a 40	40		2,28			0,85	1,10	1,20

Tabla 26: Espaciado de Pernos en función del tipo de Bulón

- Según las características del Perno Split Set y la calidad de la roca según RMR, el espaciado recomendado puede ir de 1 m a menos, según disminuya la calidad del macizo rocoso.
- Para el uso de pernos Helicoidales que tienen mayor capacidad de soporte, el espaciado puede ir según la calidad del macizo rocoso 1,3 m a 1 m.

• Para los pernos Swellex, según la calidad del macizo rocoso el espaciado puede ser de 1,5 m en roca de buena calidad a 1,3 m para roca de mala calidad.

3.1.6 MODELADO EN FHASE2

A través del software PHASE2 se verifico el estado tensional de un sector de los Niveles 2429 y 2433. El análisis se realizó por tramos en toda la basal de estudio, se utilizó el criterio de Hoek - Brown con los datos de ROCLAB obtenidos en la sección 1.1 del presente Capitulo, para los tres tipos de materiales que se presentan: roca de caja Monzonita, Veta ORE y Alteración.

Análisis tensional ov y oh a la profundidad de 366 m:

• La tensión vertical estimada σv , considerando una densidad media de macizo rocoso, $\gamma = 0.027 \text{ MN/m3}$ (2.7 ton/m³), será:

$$\sigma v = \gamma^* z = 0.027 (MN/m^3) * 366 (m) = 9.88(MPa)$$

• La tensión horizontal media, estará dada:

$$\sigma h = k * \sigma v$$

El valor de k, donde Eh (expresado en GPa) es el módulo de deformación promedio del macizo superior medido en la dirección horizontal y para el caso de la Monzonita inferimos un valor de Eh = 45 GPa, queda dado por:

$$k = 0.25 + 7 * Eh * (0.001 + 1/z)$$

 $k = 0.25 + 7 * 45 GPa * (0.001 + 1/366 m) = 1,43$

De este modo, la tensión horizontal será:

$$\sigma h = k * \sigma v = 0.28 * 10.5 (MPa) = 14.97 (MPa)$$

La simulación del estado tensional se realizó en los tramos 1, tramo 3 y tramo 8. Se eligieron estos tres debido a que presentan características geomecánicas diferentes.

TRAMO 1: este corresponde al acceso al Nivel 2429, en cuyo sector se tiene una Roca de calidad Buena con un RMR de 61,25 y GSI de F/R, MF/B, FP/MB, es una Roca tipo B, por lo tanto, sin sostenimiento En la Ilustración 50 A se muestra la sección de la labor sin la excavación donde las tensiones están en equilibrio. En la Ilustración 50 B se muestra la excavación realizada en la que se puede observar el estado tensional y los vectores de deformación junto con los factores de seguridad.

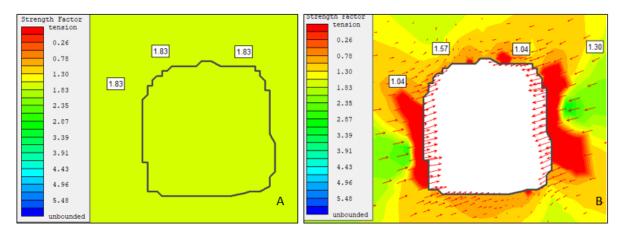


Ilustración 49: A) Stage 1 sin excavación, tensiones en equilibrio. B) Stage 2 labor con excavación, tensiones en hastiales y vectores de deformación

TRAMO 3: corresponde a las progresivas 70 a 150 del N2429 NO. Este sector tiene un RMR de 48,2 Roca Buena y un GSI de F/M, MF/R, FP/B, Roca C. Ya que este tramo corresponde a la basal se tienen en cuenta los tres materiales presentes, Roca de Caja, Roca Alterada y el Ore o Veta. El sostenimiento será con pernos Split Set o Helicoidales. La Ilustración 51 A muestra el Stage 1 sin excavación con el estado tensional en equilibrio. La Ilustración 51 B exhibe la labor con excavación, se muestran los vectores de deformación y factores de seguridad. En la Ilustración 51 C se presenta el Stage 3, la labor sostenida según recomendaciones en función de la calidad del Macizo Rocoso.

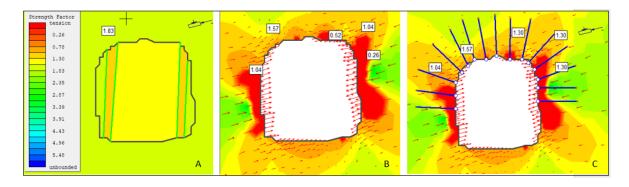


Ilustración 50: A) Stage 1 sin excavación, tensiones en equilibrio. B) Stage 2 labor con excavación, tensiones en hastiales y vectores de deformación. C) Stage 3 sostenimiento colocado aumento factor de seguridad de la labor.

TRAMO 8: corresponde a las progresivas 30 a 70 del N2429 SE, el sector tiene un RMR de 40 Roca Mala y un GSI de MF/M, FP/R, FP/M, Roca Tipo C. En este tramo la zona de alteración es de mayor espesor al igual que el Ore o Veta. En la Ilustración 52 A se exhibe el Stage 1 sin excavación, con un estado tensional en equilibrio. La Ilustración 52 B presenta la labor con excavación, los vectores de deformación y factores de seguridad. La Ilustración 52 C muestra el Stage 3 con la labor sostenida según recomendaciones en función de la calidad del Macizo Rocoso.

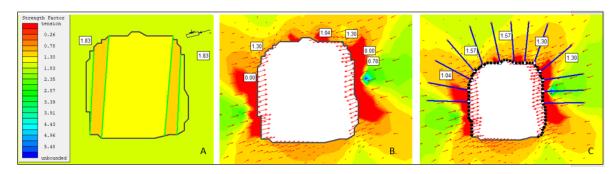


Ilustración 51: Ilustración 22: A) Stage 1 sin excavación, tensiones en equilibrio. B) Stage 2 labor con excavación, tensiones en hastiales y vectores de deformación. C) Stage 3 sostenimiento colocado aumento factor de seguridad de la labor

3.2 NIVEL 2409

A este nivel se accede por Rampa Central 2372. Se bifurca hacia el NO con una longitud de 292,4 m y hacia el SE, 178,6m. La sección transversal promedio de la galería es de 3,8 x 3,8 m.

Al ser una labor realizada hace tiempo y actualmente encontrarse en stand by, no cuenta con la ventilación adecuada por lo que las condiciones ambientales dificultaron la toma de datos, se logró sólo abarcar 150 m de la longitud hacia el SE a pesar de tomar los recaudos necesarios para la protección personal (uso de EPPs y monitores multigas). Hacia el NO el escenario es distinto, el flujo de aire propicia un ambiente que permitió completar el mapeo en toda la longitud.

En cuanto a la fortificación hacia el SE gran parte de la labor cuenta con mallas y pernos Split set y Helicoidales y en zonas puntuales de sobre excavación, Cintas Strap. Así mismo se observan zonas de mallas cargadas y otras de colapso. Hacia el NO la fortificación es más espaciada.

Se aprecia presencia de agua debido a filtraciones de labores superiores, pero en términos generales el ambiente es seco.

Para el mapeo geomecánico se dividió la labor en progresivas de 10 m, recogiendo los datos tanto en HI (hastial izquierdo) como en HD (hastial derecho), que luego fueron agrupados en 6 tramos: el Tramo 1 contiene las progresivas 10, 20 y 30 tomadas en la Rampa; el Tramo 2 reúne las progresivas 20 y 30 determinadas en el acceso al Nivel; el Tramo 3 agrupa las progresivas 10 a 80 fijadas hacia el NO de la labor al igual que las progresivas 100 a 210 que se concentran en el Tramo 4; el Tramo 5 y 6 reúnen las Progresivas 10 a 70 y 100 a 160 respectivamente, ubicadas hacia el SE de la galería.

3.2.1 PARÁMETROS GEOMECÁNICOS DEL MACIZO

Los parámetros de rotura de Hoek-Brown y de Mohr – Coulomb que se tomaron son los mismos descriptos en los Niveles 2429 y 2433 debido a que no se encontró gran diferencia entre ellos.

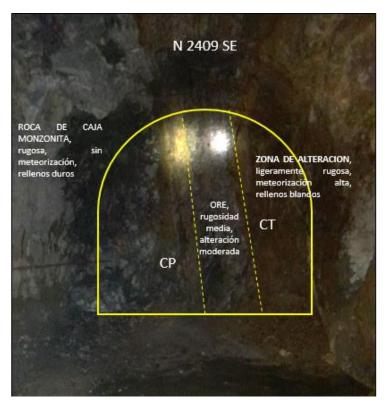


Ilustración 52: Condiciones del frente de perforación N2409 SE

3.2.2 CLASIFICACION GEOMECANICA POR TRAMOS

Los resultados obtenidos en esta etapa se muestran de manera sintetizada en las tablas presentadas y comentadas a continuación, mientras que las tablas completas se encuentran en el Anexo 3. Así mismo se presentan los planos correspondientes a la ubicación de cada tramo.

TRAMO 1: el RMR corregido promedio de este tramo es de 61,17 lo que permite clasificar al macizo como **CLASE II - Roca Buena**, en tanto que de acuerdo al Índice GSI es de **CLASE B** y según Barton la calidad de la roca es **MEDIA**, lo que indica que en términos generales la calidad es buena.

TRAMO 2: según el valor del RMR corregido promedio de 48,88 estamos en presencia de roca de **CLASE III – REGULAR**, según GSI es de **CLASE C** y según Barton la calidad es **MALA** (Tabla 27).

		RMR		Clasificación RMR		Clasificac	ión GSI	Clasificación Q de Barton			
Tramo	Pr.	RMR	Ajustado	Clasificación	RMR	Clasificación	GSI	Índice GSI	Q	Clasificación	
	10	73	65	BUENA							
	10	71,5	63,5	BUENA	- 62,25 BUENA						
1	20	69	61	BUENA		BUENA	57	F/R, MF7B, FP/MB	7,71	MEDIA	
1	20	70	62	BUENA					7,71		
	30	69	61	BUENA							
	30	69	61	BUENA							
	20	55	47	REGULAR							
2	20	67,5	59,5	REGULAR	F0.7F	DECLUAD	46	F/M,	2.75	24414	
2	2	52	42	REGULAR	50,75	REGULAR	46	MF/R,FP/B	2,75	MALA	
	30	62,5	54,5	REGULAR							

Tabla 27: Clasificación Geomecánica - Tramo 1 y 2, Nivel 2409

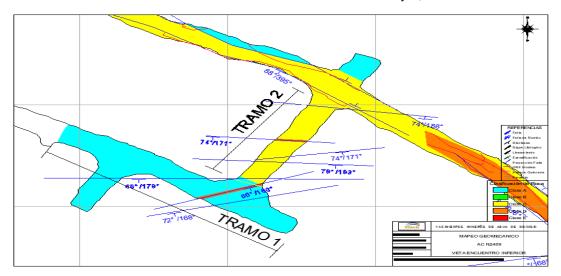


Ilustración 53: Ubicación Tramos 1 y 2, Nivel 2409

RN	ЛR			Clasificación F	RMR		Clasifica	ción GSI	Clasificación Q de Barton	
Tramo	Pr.	RMR	Ajustado	Clasificación	RMR	Clasificación	GSI	Índice GSI	Q	Clasificación
	10 NO	50,5	40,5	REGULAR						
	40 NO	67,5	56,5	REGULAR						
3	40 NO	64	52	REGULAR			48,21	F/M, MF/R,FP/B	3,34	
	60 NO	60,5	49,5	REGULAR	53,21	REGULAR				MALA
	60 NO	67	56	REGULAR						
	80 NO	70	59	REGULAR						
	80 NO	71	59	REGULAR						
	100	45	33	MALA						
	NO	73	61	BUENA						
	130	52	40	MALA						MALA
	NO	57	46	REGULAR				MF/M,		
4	180 NO	58	46	REGULAR	44,81	REGULAR	40	FP/R,FP/M	1,87	
	190							17710,177101		
	NO	48	36	MALA						
	210	67	56	REGULAR	REGULAR					
	NO	51,5	40,5	REGULAR						

Tabla 28: Resultados Clasificación Geomecánica - Tramo 3 y 4, Nivel 2409

TRAMO 3: el RMR corregido promedio obtenido en este Tramo permite clasificar al macizo como **CLASE III – REGULAR**, GSI indica que es una roca de **CLASE C** mientras que según Barton, la calidad es **MALA**.

TRAMO 4: el valor 45,63 como resultado del RMR promedio clasifica al macizo como **CLASE III – REGULAR**, GSI lo cataloga como **CLASE D** y Barton sugiere que es de calidad **MALA**.

	RI	MR		С	lasificación RM	Clasific	cación GSI	Clasificación Q de Barton		
Tramo	Pr.	RMR	Ajustado	Clasificación	RMR	Clasificación	GSI	Índice GSI	Q	Clasificación
	10 SE	51,5	41,5	REGULAR		MALA				
	20 SE	48,5	37,5	MALA				MF/M, FP/R,FP/M	0,59	
5	20 JL	58	46	REGULAR						
	40 SE	48,5	36,5	MALA	38,29		33,29			MUY MALA
		49,5	38,5	MALA						
	70 SE	43	31	MALA						
		48	37	MALA						
	100 SE	50	38	MALA						
	100 JL	56	44	REGULAR						
	120 SE	51	39	MALA						
6	120 JL	42	30	MALA	38,56	MALA	33,56	MF/M,	0,84	MUY MALA
0	140 SE	44,5	32,5	MALA	30,30	IVIALA	33,30	FP/R,FP/M	0,64	WOY WALA
	140 3E	49	37	MALA						
-	160 SE	44	33	MALA						
	100 SE	67	55	REGULAR						

Tabla 29: Clasificación Geomecánica - Tramo 5 y 6, Nivel 2409

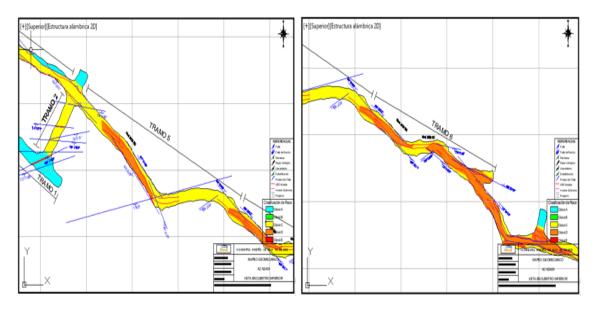
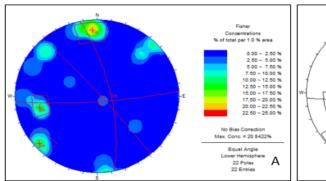


Ilustración 54: Ubicación Tramo 5 y 6, Nivel 2409

TRAMO 5: en este tramo se observa un RMR promedio de 41,93 según la clasificación de Bieniawski el macizo es **de CLASE IV – MALA**, de acuerdo a GSI es de **CLASE D** y Barton indica que es de calidad **MALA**.

TRAMO 6: similar al Tramo 5, con un RMR de 41,44 se clasifica como CLASE IV – MALA, pero según GSI es de CLASE D y Barton la señala como calidad MALA.

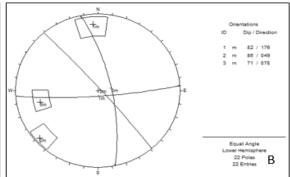

3.2.3 DATOS ESTRUCTURALES (DIACLASAS Y FALLAS) DOMINANTES DEL SECTOR

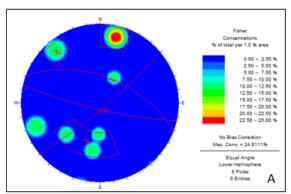
Para la determinación de los Datos Estructurales se aplicó la misma metodología que en la sección 3.1.3 de los Niveles 2429 y 2333.

TRAMO 1 y 2: corresponden a parte de la Rampa Central y Acceso al Nivel.

N°	Identificacion	Dip	Dip Dir
1	Falla	66	179
2	Falla	72	168
3	Falla	79	183
4	Falla	82	185
5	Familia de J	82	176
6	Familia de J	86	49
7	Familia de J	71	78

Tabla 30: Dip y Dip Direction Correspondientes al Tramo 1 y 2




Ilustración 55: A) Concentración de discontinuidades enmarcadas en campos, B) Representación gráfica de principales familias de diaclasas- TRAMO 1 y TRAMO 2

TRAMO 3 y TRAMO 4: corresponde al sector NO del Nivel.

N°	Identificacion	Dip	Dip Dir
1	Falla	81	395
2	Falla	70	32
3	Falla	70	20
4	Falla	82	5
5	Falla	88	25
6	Falla	59	248
7	Falla	62	9
8	Familia de J	81	193
9	Familia de J	53	21
10	Familia de J	82	140

Tabla 31: Dip y Dip Direction correspondientes al Tramo 3 Y Tramo 4

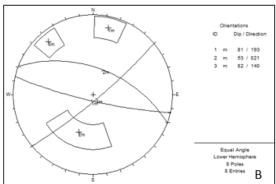
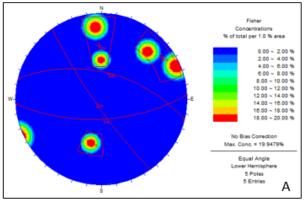



Ilustración 56: A) Concentración de discontinuidades enmarcadas en campos, B) Representación gráfica de principales familias de diaclasas- TRAMO 3 y TRAMO 4

TRAMO 5 y TRAMO 6: corresponde al sector SE del Nivel.

N°	Identificacion	Dip	Dip Dir
1	Falla	80	16
2	Falla	87	10
3	Falla	76	219
4	Falla	68	224
5	Falla	89	39
6	Falla	65	211
7	Falla	63	202
8	Falla	89	356
9	Falla	75	195
10	Falla	79	145
11	Falla	89	18
12	Falla	75	210
13	Familia de J	64	177
14	Familia de J	81	235
15	Familia de J	55	14

Tabla 32: Dip y Dip Direction correspondientes al Tramo 5 Y Tramo 6

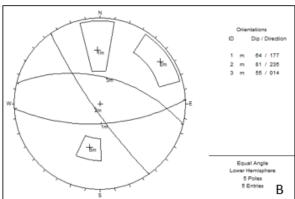


Ilustración 57: A) Concentración de discontinuidades enmarcadas en campos, B) Representación gráfica de principales familias de diaclasas- TRAMO 5 y TRAMO 6

3.2.4 ANÁLISIS DE CUÑA (UNWEDGE)

Una vez obtenidas las familias de diaclasas de cada Tramo, se procede al análisis en detalle de las mismas mediante la aplicación del software "UNWEDGE". Los resultados se presentan de la forma ya explicada en esta sección de los Niveles 2429 y 2433.

TRAMO 1 y 2:

Análisis 1: corresponde al tramo 1 de la Rampa Central. Se observa la cuña 7 de color rosa en corona, con un peso de 0,079 t y un factor de seguridad de 99. No se considera potencialmente un riesgo. (Ilustración 57).

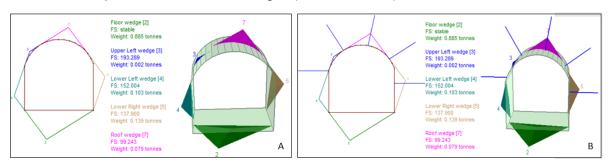


Ilustración 58: A) Cuñas presentes en Tramo 1 y 2 - B) Simulación de sostenimiento con pernos Helicoidales

TRAMO 5: corresponde a los primeros 70 m de la basal al SE.

Análisis 2: en la progresiva 20 se observa la cuña 8 de color verde en corona con potencial caída debido a que tiene un peso de 2,69 t y un factor de seguridad de 0. (Ilustración 58).

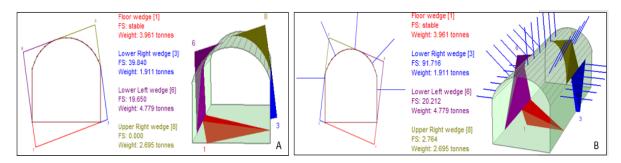


Ilustración 59: Cuñas presentes en Tramo 5 Pr 20 N2409 SE - B) Simulación de sostenimiento con pernos Helicoidales

Análisis 3: en la progresiva 70 se observa la cuña 8 de color verde en corona, tiene un peso de 1,22 t y factor de seguridad de 0. (Ilustración 59).

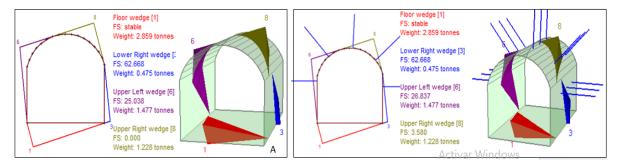


Ilustración 60: Cuñas presentes en Tramo 5 Pr 70 N2409 SE - B) Simulación de sostenimiento con pernos Helicoidales

TRAMO 6: corresponde a las progresivas 100 a 160 de la Basal al SE.

Análisis 4: en la progresiva 120 se observa la cuña 8 de color verde en corona con un peso de 1,28 t y factor de seguridad de 0. (Ilustración 60).

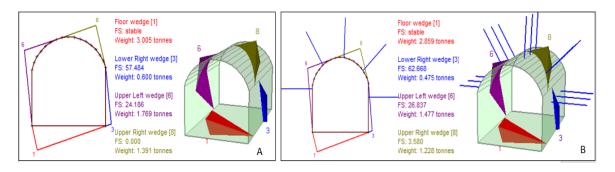


Ilustración 61: Cuñas presentes en Tramo 6 Pr 120 N2409 SE - B) Simulación de sostenimiento con pernos Helicoidales

Análisis 5: en la progresiva 160 se observa la cuña 8 de color verde en corona, con un peso de 0,98 t y factor de seguridad de 0. (Ilustración 61).

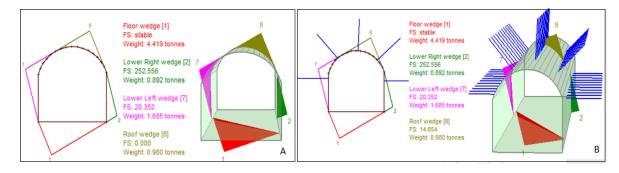


Ilustración 62: Cuñas presentes en Tramo 6 Pr 160 N2409 SE - B) Simulación de sostenimiento con pernos Helicoidales

A continuación, se muestra, en la Tabla 33, un resumen de todas las cuñas analizadas en el Nivel 2409, con su ubicación, Dip y Dip Direction, peso y factores de seguridad sin sostenimiento y con sostenimiento. Se puede observar que el factor de seguridad aumentó muy por arriba del factor 1,5 que es el que usa la em-

presa. La simulación del sostenimiento se realizó con pernos Helicoidales de 2,10 m de longitud, de color azul, y pernos Split Set de 1,8 m de longitud de color rojo.

				SIN SOSTENIMI	ENTO	CON SOSTE	NIMIENTO
TRAMO	ANALISIS	DIP	DIP DIRECTION	PESO (t)	FACT OR DE	PESO (t)	FACTOR DE
		82	176				
1 y 2	Analisis 1	86	49	0,079	99	0,079	99
1 y Z		71	78	0,079	33	0,079	33
		66	179				
		64	177				
	Analisis 2	81	235	2,69	0	2,69	2,7
		55	14	2,09	0	2,09	2,7
5		80	16				
3	Analisis 3	64	177			1,22	
		81	235	1,22	0		3,58
		55	14	1,22			3,30
		68	224				
		64	177				
	Analisis 4	81	235	1,28	0	1,28	3,58
	Alialisis 4	55	14	1,20		1,20	3,36
6		75	195				
		75	195				
	Analisis 5	75 210		0,98	0	0,98	14
		89	18				

Tabla 33: Resumen de Características de cuñas analizadas N24209

3.2.5 DETERMINACION DEL SOSTENIMIENTO

SOSTENIMIENTO SEGÚN CLASIFICACION RMR

				CALCU	LO DE SOSTEN	NIMIENTO		
Tramo	Ubicación	Pr.	RMR	Ancho de la Labor (b)m	Altura de Carga HP(m)	Densidad δ (t/m³)	Peso de Carga de Roca W (t/m²)	Sostenimiento RMR
1	Rampa	10 a 30	62,25	3,8	1,43	2,7	3,87	Bulonado eventual
2	Acc	20 a 30	50,75	3,8	1,87	2,7	5,05	Bulonado Sistemático, espaciado 1,5X1,5 y Malla Electrosoldada
3	Basal NO	10 a 80	53,21	3,8	1,78	2,7	4,80	Bulonado Sistemático, espaciado 1,5X1,5 y Malla Electrosoldada
4	Basal NO	100 a 210	44,81	3,8	2,10	2,7	5,66	Bulonado Sistemático, espaciado 1,5X1,5 y Malla Electrosoldada
5	Basal SE	10 a 70	38,29	3,8	2,35	2,7	6,33	Bulonado sistemático 1,3X1,3 y Malla Electrosoldada + Shotcrete
6	Basal SE	100 a 160	38,56	3,8	2,33	2,7	6,30	Bulonado sistemático 1,3X1,3 y Malla Electrosoldada + Shotcrete

Tabla 34: Sostenimiento RMR

TRAMO 1: este tramo corresponde a la Rampa Central. La clasificación RMR es de Roca Buena por lo que el sostenimiento recomendado es pernos de anclaje eventuales en caso de ser necesario. El claro sin sostener para este tipo de roca es de 25 m.

TRAMO 2: este tramo corresponde al acceso a la basal, se clasifica según RMR como Roca Regular y el sostenimiento recomendado es de empernado sistemático con espaciado de 1,5 x 1,5 m más malla electrosoldada. El claro sin sostener para este tipo de roca es de 18 m.

TRAMO 3 y TRAMO 4: corresponden a la basal hacia el NO, se clasifica según RMR como Roca Regular y el sostenimiento recomendado es de empernado sistemático de 1,5 x 1,5 m más malla electrosoldada. El claro sin sostener para un RMR de 52 es de 21 m y para un RMR de 42 es de 9 m.

TRAMO 5 y TRAMO 6: corresponden a la basal hacia el SE, se clasifica según RMR como Roca Mala y el sostenimiento recomendado es de empernado sistemático de 1,3 x 1,3 m más malla electrosoldada, más Shotcrete con fibra de 5 cm de espesor. El claro sin sostener para este tipo de roca es de 3 m, es decir que el sostenimiento debe ir inmediatamente luego de una voladura.

SOSTENIMIENTO SEGÚN CLASIFICACION DE BARTON

A modo de comparación se realiza el cálculo de sostenimiento según la clasificación de Barton (Tabla 35).

				SOSTE	NIMIENTO SE	GÚN Q	DE BARTON		
Tramo	Ubicación	Pr.	Q de Barton	ESR	Altura de la Labor (m)	De	Clasificación	Categoría de sostenimiento	Sostenimiento Recomendado
1	Rampa	10 a 30	7,71	2	3,8	1,9	MEDIA	1	Sin Sostenimiento
2	Acc	20 a 30	2,75	2	3,8	1,9	MALA	1	Sin Sostenimiento
3	Basal SE	10 a 80	3,34	2	3,8	1,9	MALA	1	Sin Sostenimiento
4	Basal SE	100 a 210	1,87	2	3,8	1,9	MALA	4	Bulonado sistemático 1,3 x 1,3
5	Basal NO	10 a 70	0,59	2	3,8	1,9	MUY MALA	4	Bulonado sistemático 1,3 x 1,3 más shotcrete
6	Basal NO	100 a 160	0,84	2	3,8	1,9	MUY MALA	4	Bulonado sistemático 1,3 x 1,4 más shotcrete

Tabla 35: Sostenimiento Q de Barton

TRAMO 1 y 2: estos tramos corresponden a parte de rampa y acceso a la basal del N2409, de CALIDAD MEDIA A MALA, según la clasificación de Barton no requieren sostenimiento.

TRAMO 3: este tramo se clasificó como ROCA DE CALIDAD REGULAR A MALA, y con una categoría de sostenimiento 1, por lo tanto, la recomendación según Barton es Sin Sostenimiento.

TRAMO 4, TRAMO 5 y TRAMO 6: estos tres tramos, según la clasificación de Barton, son Roca de CALIDAD MUY MALA y corresponden a la categoría de sostenimiento 4, por lo que será necesario un empernado sistemático de 1,3 x 1,3 m más shotcrete de 5 cm a 10 cm de espesor.

SOSTENIMIENTO SEGÚN CLASIFICACION GSI

Tramo	Ubicación	GSI	GSI	Sostenimiento
TRAMO 1	Rampa	55,67	F/R, MF/B, FP/MB	Bulones Split Set sistemáticos 1,3 x 1,3 m + malla
TRAMO 2	Acc	44,63	F/M, MF/R,FP/B	Bulones Split Set, Helicoidales sistemáticos 1,3 x 1,3 m + malla
TRAMO 3	Basal SE	48,00	F/M, MF/R,FP/B	Bulones Split Set sistemáticos 1,3 x 1,3 m´+ malla
TRAMO 4	Basal SE	39,63	MF/M, FP/R,FP/M	Shotcrete 5cm + malla con bulones Helicoidales. 1,3 x 1,3 m
TRAMO 5	Basal NO	33,64	MF/M, FP/R,FP/M	Shotcrete 5cm + malla con bulones Helicoidales. 1,3 x 1,3 m
TRAMO 6	Basal NO	33,44	MF/M, FP/R,FP/M	Shotcrete 5cm + malla con bulones Helicoidales. 1,3 x 1,3 m

Tabla 36: Sostenimiento GSI

TRAMO 1: el primer tramo según GSI corresponde a una roca tipo **A** o **B**, por lo que el sostenimiento a aplicar será de manera eventual con bulones Split Set y con una distribución de 1,3 x 1,3 m.

TRAMO 2 y 3: estos sectores corresponden a una roca tipo **C** por lo que la recomendación de sostenimiento será de empernado sistemático con Split Set en una distribución de 1,3 x 1,3 m. más malla electrosoldada.

TRAMO 4, 5 Y 6: estos sectores corresponden a una roca tipo **D** por lo que el sostenimiento recomendado será de Shotcrete con fibra (SHFP), bulones Helicoidales o Swellex con una distribución de 1,3 x 1,3 m. más malla electrosoldada.

ESPACIADO DE PERNOS O BULONES

A continuación, en la Tabla 37 se muestran los espaciamientos recomendados según el tipo de perno a emplear. Como se mencionó en esta sección para el Nivel 2409 y 2433, se tiene en cuenta los tres tipos con los que cuenta la empresa.

	Tn	Dp
SS (Tn)	6	4,62
He (Tn)	10	7,69
Sw (Tn)	12	9,23

SS: Perno Split Set

He: Perno Helicoidal

Sw: Perno Swellex

					ANALISIS	DE SOPORT	E CON BULO	NES		
Tramo	Ubicación	Pr.	RMR	Ancho de la Labor (b)m	Altura de Carga HP(m)	Densidad δ (t/m³)	Factor de Seguridad	Espaciamiento Penos SS (S) m	Espaciamiento Penos He (S) m	Espaciamiento Penos Sw (S) m
1	Rampa	10 a 30	62,25		1,43			1,07	1,38	1,52
2	Acc	20 a 30	50,75		1,87			0,94	1,21	1,33
3	Basal SE	10 a 80	53,21	3,8	1,78		4.20	0,96	1,24	1,36
4	Basal SE	100 a 210	44,81	3,8	2,10	2,8	1,30	0,89	1,14	1,25
5	Basal NO	10 a 70	38,29		2,35			0,84	1,08	1,19
6	Basal NO	100 a 160	38,56		2,33			0,84	1,08	1,19

Tabla 37: Espaciamiento en función del Perno a emplear

MODELADO EN PHASE2

A través del software PHASE2 se verificó el estado tensional del Nivel 2409.

Análisis tensional ov y oh a la profundidad de 390 m.

• La tensión vertical estimada σv , considerando una densidad media de macizo rocoso,

$$\gamma = 0.027 \text{ MN/m3} (2.7 \text{ ton/m}^3), \text{ será:}$$

$$\sigma v = \gamma * z = 0.027 (MN/m^3) * 390 (m) = 10,5 (MPa)$$

• La tensión horizontal media, estará dada:

$$\sigma h = k * \sigma v$$

El valor de k:

$$k = 0.25 + 7 * Eh * (0.001 + 1/z)$$

Donde Eh (expresado en GPa), es el módulo de deformación promedio del macizo superior medido en la dirección horizontal para el caso de la Monzonita inferimos un valor de Eh = 45 GPa.

De este modo, la tensión horizontal será:

$$\sigma h = k * \sigma v = 0.28 * 10.5 (MPa) = 14.41 (MPa)$$

TRAMO 1 y 2: estos tramos corresponden a la parte de Rampa Central y acceso al Nivel 2409, en este sector la roca tiene una calidad según RMR de 60 ROCA BUENA, GSI de F/R, MF/B, FP/MB, es decir Tipo A o B. En la ilustración 64 se muestra el análisis tensional del tramo 1 en dos escenarios, el primero sin la excavación donde las tensiones se encuentran en equilibrio (A) y el segundo con la excavación realizada (B), se puede observar los vectores de deformación más concentrados en los hastiales, además de mostrar el factor de seguridad por encima de 1.5.

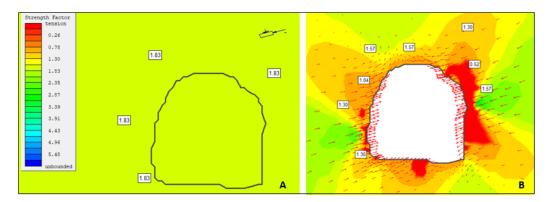


Ilustración 63: Stage 1 sin excavación, tensiones en equilibrio. B) Stage 2 labor con excavación, tensiones en hastiales y vectores de deformación

TRAMO 3 y 4: La calidad de la roca es REGULAR con un RMR promedio entre 53 y 44, y GSI de F/M, MF/R, FP/B, Roca tipo C a D. En estos sectores se distinguen tres tipos distintos de materiales a tener en cuenta en la simulación: Roca de Caja, Alteración y Ore. Las descripciones de estos materiales se encuentran en la sección "3.1.1 Parámetros Geomecánicos del Macizo". El sostenimiento será con pernos Split Set o Helicoidales. En la Ilustración 65 A se muestra el Stage 1 sin excavación y se observa un estado tensional en equilibrio. La Ilustración 65 B presenta la labor con la excavación y muestra los vectores de deformación y factores de seguridad. En la Ilustración 65 C, correspondiente al Stage 3, se observa la labor sostenida según recomendaciones en función de la calidad del Macizo Rocoso.

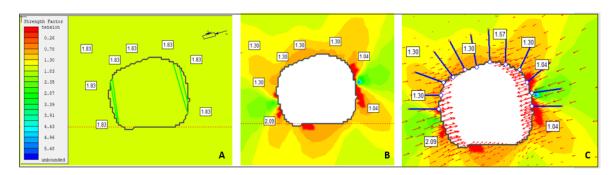


Ilustración 64:A) Stage 1 sin excavación, tensiones en equilibrio. B) Stage 2 labor con excavación, tensiones en hastiales y vectores de deformación. C) Stage 3 sostenimiento colocado aumento factor de seguridad de la labor

TRAMO 5 y 6: corresponden a la basal hacia el NO donde la calidad de la roca es MALA con un RMR promedio de 38, GSI de MF/M, FP/R, FP/M, Roca Tipo C. En estos sectores se distinguen tres tipos distintos de materiales: Roca de Caja, Alteración y Ore. El sostenimiento será con pernos Split Set o Helicoidales. La Ilustración 66 A presenta el Stage 1 sin excavación y se observa un estado tensional en equilibrio. La Ilustración 66 B muestra la labor con excavación y los factores de seguridad. En la Ilustración C se exhibe el Stage 3 con la labor sostenida según recomendaciones en función de la calidad del Macizo Rocoso y vectores de deformación.

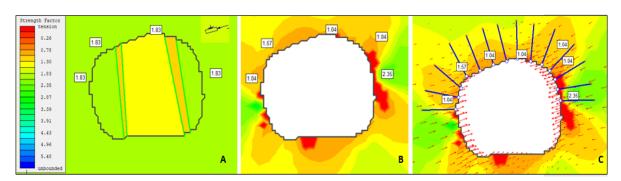


Ilustración 65: A) Stage 1 sin excavación, tensiones en equilibrio. B) Stage 2 labor con excavación, tensiones en hastiales y vectores de deformación. C) Stage 3 sostenimiento colocado aumento factor de seguridad de la labor

3.1 NIVEL 2390

Para acceder a este nivel es necesario tomar la Rampa Central 2372 que se divide en dos direcciones: una bifurcación se dirige hacia el noroeste (NO) y tiene una longitud de 294 m, mientras que la otra se dirige hacia el sureste (SE) con una extensión de 269 m. La galería tiene una sección transversal promedio de 3,8 x 3,8 m. Al ser una labor en desarrollo, tanto el mapeo geológico como el sostenimiento de la misma, se fueron realizando conforme avanzaba la excavación.

En relación a la fortificación la mayoría de la labor cuenta con mallas y pernos tipo Split Set y Helicoidales. Además, en áreas específicas de mayor necesidad, se fortificó con Shotcrete, mallas y pernos Helicoidales.

En cuanto al ambiente hidrogeológico, se puede notar la presencia de agua debido a filtraciones procedentes de labores superiores, a pesar de esto el ambiente es mayormente seco.

3.1.1 PARÁMETROS GEOMECÁNICOS DEL MACIZO

Los parámetros de rotura de Hoek-Brown Y de Mohr – Coulomb que se tomaron son los mismos descriptos en los Niveles 2429 y 2433 debido a que no se encontró gran diferencia entre ellos.

Ilustración 66: Frente de perforación N2390

3.1.2 CLASIFICACION GEOMECANICA POR TRAMO

De manera similar a los Niveles 2429 y 2433, se dividió esta labor en progresivas de 10 m y se tomaron datos tanto en el hastial izquierdo (HI) como en el hastial derecho (HD). Posteriormente, estos datos se agruparon en 5 tramos: Tramo 1 que incluye el acceso a la labor y un bolsillo, Tramo 2 que comprende las progresivas 10, 30, 60, 100 y 140 hacia el NO, el Tramo 3 agrupa las progresivas 160, 190, 220 y 270 hacia el NO, el Tramo 4 contiene las progresivas 20, 50, 80 y 110 hacia el SE y el Tramo 5 incluye las progresivas 140, 180, 230 y 250 hacia el SE. Los resultados obtenidos, se muestran a continuación:

TRAMO 1: el valor promedio corregido del RMR es de 62,73, esto clasifica al macizo como **CLASE II – ROCA BUENA** de acuerdo con Bieniawski. Al evaluarlo mediante el Índice GSI se clasifica como **CLASE B**. Además, según el sistema de Barton, la calidad de la roca se sitúa en el rango de **MEDIA**. Estas clasificaciones sugieren de manera general que la calidad del macizo es buena y ofrece una adecuada estabilidad.

TRAMO 2: tiene un valor promedio corregido del RMR de 46,08 lo que indica la presencia de una roca de **CLASE III - REGULAR**, según la clasificación de Bieniawski. Mediante el Índice GSI, se clasifica como **CLASE D**, mientras que la clasificación de Barton asigna una calidad **MALA**.

TRAMO 3: el valor promedio corregido del RMR 48,99 permite clasificar al macizo como **CLASE III - REGULAR** según Bieniawski. El Índice GSI también indica que se trata de una roca de **CLASE C** y de acuerdo con Barton la calidad de la roca en este tramo se considera **MALA** (Tabla 38).

			RMR	Clasi	ficación	RMR	Clasit	ficación GSI	Clas	ificación Q de Barton	
TRAMO	Pr.	RMR	Ajustado	Clasificación	RMR	Clasificación	GSI	Clasificación	Q	Clasificación/Tramo	
	ACC	65	60	REGULAR				F/R, MF7B, 7.66			
1	Acc	63	58	REGULAR	61,38	BUENA	56,375		7,66	MEDIA	
1	BOLSILLO	73	68	BUENA	01,36	BOLIVA	30,373	FP/MB	7,00	MEDIA	
	BOLSILLO	64,5	59,5	REGULAR							
	10 NO	48,5	37,5	MALA							
	10 100	56	45	REGULAR							
	30 NO	68	56	REGULAR				MF/M,	1,33	MALA	
	30 110	54,5	42,5	REGULAR			39,35				
2	60 NO	53	41	REGULAR	44,35	.35 REGULAR					
_		58	46	REGULAR	44,33	REGOLAR		FP/R,FP/M	FP/R,FP/M	FP/R,FP/M	WINEA
	100 NO	62	50	REGULAR							
	100 100	63	51	REGULAR							
	140 NO	47,5	35,5	MALA							
	140110	51	39	MALA							
	160 NO	58	46	REGULAR							
	100 NO	58	46	REGULAR							
	190 NO	63	51	REGULAR							
3	130 NO	51	39	MALA	47,63	REGULAR	42,63	F/M,	1,62	MALA	
3	220 NO	63	51	REGULAR	77,03	REGULAR	42,03	MF/R,FP/B	1,02	IVIALA	
	220 110	61	49	REGULAR							
	270 NO	59	47	REGULAR							
	270110	64	52	REGULAR							

Tabla 38: Clasificación Geomecánica Tramos 1, 2 y 3

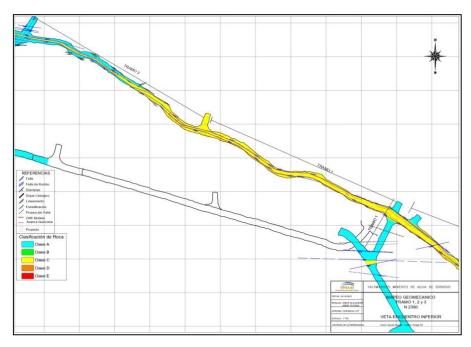


Ilustración 67: Ubicación Tramos 1, 2 y 3

TRAMO 4: el valor promedio corregido del RMR es de 48,71, clasificando al macizo como **CLASE III - REGULAR** según Bieniawski. El Índice GSI lo cataloga como **CLASE C**, y según Barton la calidad se considera **MALA**.

TRAMO 5: se observa un RMR promedio de 40,11 según Bieniawski el macizo es de **CLASE III – REGULAR**, de acuerdo a GSI es de **CLASE D** y Barton indica que es de calidad **MUY MALA** (Tabla 39)

			RMR	Clasificación RMR Clasificación G		ificación GSI	Clasifi	cación Q de Barton		
TRAMO	Pr.	RMR	Ajustado	Clasificación	RMR	RMR Clasificación		Clasificación	Q	Clasificación
	20 SE	55	44	REGULAR						
	20 JL	67,5	56,5	REGULAR						
	50 SE	51	40	MALA						
4	30 3E	54,5	43,5	REGULAR	47,56	REGULAR	42,56	F/M, MF/R,FP/B	1,92	MALA
	80 SE	59,5	47,5	REGULAR				IVIF/K,FP/D		
	80 JL	64	52	REGULAR						
	110 SE	51	40	MALA						
	110 31	68	57	REGULAR						
	140 SE	48	36	MALA						
	140 31	51	39	MALA						
	180 SE	51	39	MALA					0,71	
5	180 JL	52,5	40,5	REGULAR	39,50	MALA	34,50	MF/M, FP/R,FP/M		MUY MALA
	230 SE	61	49	REGULAR				, ,		
	230 3E	53,5	41,5	REGULAR						
	250 SE	42,5	31,5	MALA						

Tabla 39: Clasificación Geomecánica Tramos 1, 2 y 3

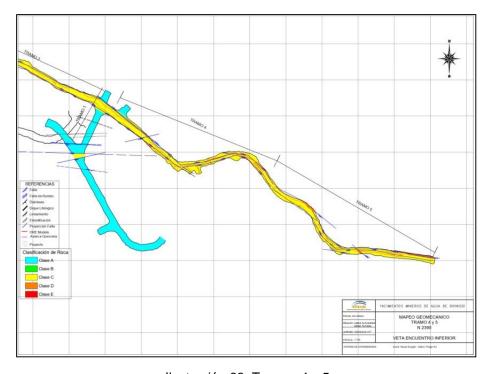


Ilustración 68: Tramos 4 y 5

3.1.1 DATOS ESTRUCTURALES (DIACLASAS Y FALLAS) DOMINANTES DEL SECTOR

En la presente sección, continuando con la metodología explicada en los Niveles 2429 y 2433, se determinan las familias de discontinuidades, su agrupación y orientación homogénea, adaptándose a las condiciones específicas de cada zona. Los resultados de estas mediciones, procesados mediante el Software DIPS se presentan a continuación:

TRAMO 1: corresponde al acceso al Nivel 2390 y a un bolsillo del mismo.

Nº	Identificación	Dip	Dip Dir
1	F	70	183
2	F	78	2
3	F	86	32
4	F	84	32

Tabla 40: Resumen DIP y Dips Tramo 1

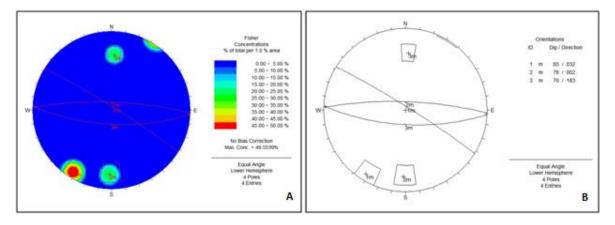


Ilustración 69: Zonas de Concentración y Familias de Discontinuidades Tramo 1

TRAMO 2: corresponde a las progresivas 10 a 140 hacia el NO.

Nº	Identificación	Dip	Dip Dir
1	F	72	23
2	F	74	23
3	F	72	23
4	F	74	23
5	F	70	22
6	F	70	17
7	F	70	15
8	F	70	16
9	F	66	36
10	F	65	36
11	F	70	38
12	F	72	36
13	F	70	18

Tabla 41: Resumen DIP y Dips Tramo 2

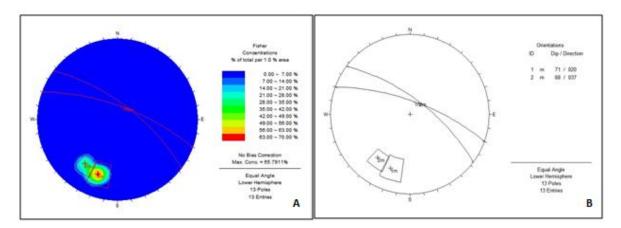


Ilustración 70: Zonas de Concentración y Familias de Discontinuidades Tramo 2

TRAMO 3: corresponde a las progresivas 160 a 270 hacia el NO.

Nº	Identificación	Dip	Dip Dir
1	F	72	38
2	F	64	35
3	F	76	24
4	F	58	30
5	J	84	145
6	F	60	40
7	F	80	38
8	F	65	52
9	F	65	20
10	J	85	45
11	J	62	250
12	J	66	20
13	F	84	195
14	F	82	195

Tabla 42: Resumen DIP y Dips Tramo 3

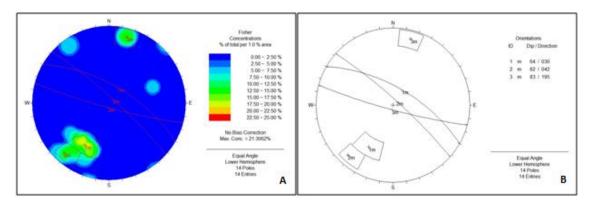


Ilustración 71: Zonas de Concentración y Familias de Discontinuidades Tramo 3

TRAMO 4: corresponde a las progresivas 20 a 110 hacia el SE.

Nō	Identificación	Dip	Dip Dir
1	F	74	34
2	F	78	160
3	F	76	32
4	F	78	38
5	F	68	356
6	F	74	354
7	F	74	340
8	F	74	18
9	F	74	15

Tabla 43: Resumen DIP y Dips Tramo 4

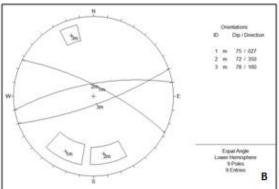
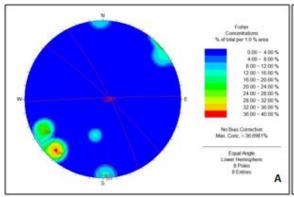
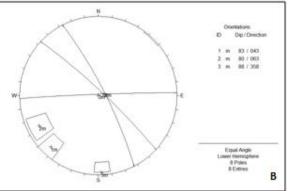



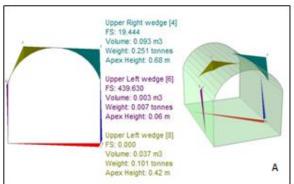
Ilustración 72: Zonas de Concentración y Familias de Discontinuidades Tramo 4

TRAMO 5: corresponde a las progresivas 140 a 250 hacia el SE.

Nō	Identificación	Dip	Dip Dir
1	F	84	45
2	F	84	42
3	F	86	234
4	F	78	64
5	F	82	62
6	F	80	42
7	F	50	12
8	F	88	358

Tabla 44: Resumen DIP y Dips Tramo 5




Ilustración 73: de Concentración y Familias de Discontinuidades Tramo 5

3.1.2 ANALISIS DE CUÑAS CON SOFTWARE UNWEDGE

Una vez obtenidas las familias de diaclasas de cada Tramo, se procede al análisis en detalle de las mismas mediante la aplicación del software "UNWEDGE". La disposición de los datos sigue el formato previamente explicado en la sección 3.1.4 de los Niveles 2429 y 2433. A continuación, se exponen los resultados obtenidos de este análisis particular:

TRAMO 1: en este tramo se observa la cuña 8 de color verde, en el lado izquierdo de la corona, de peso y dimensiones considerables, 0,101 t y 0,037 m³ respectivamente, cuyo factor de seguridad es 0, es decir inestable y con potencial caída. (Ilustración 72).

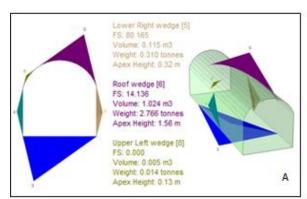



Ilustración 74: Cuñas y Simulación de Sostenimiento Tramo 1

TRAMO 3: al igual que en el TRAMO 1, se observa una cuña en el lateral izquierdo de la corona, aunque de menor tamaño y peso (0,005 m³ y 0,014 t) con un factor de seguridad de 0, lo que la hace insegura. (Ilustración 73).

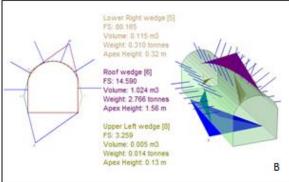
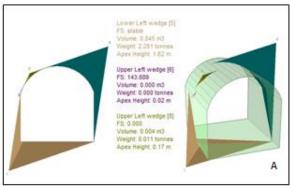



Ilustración 75: Cuñas y Simulación de Sostenimiento Tramo 3

TRAMO 4: se observa una cuña sobre el lado derecho de la corona, de tamaño y volumen más reducido, con un factor de seguridad de 0. (Ilustración 74).

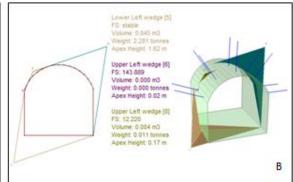


Ilustración 76: Cuñas y Simulación de Sostenimiento Tramo 4

A continuación, se muestra, en la Tabla 45, un resumen de todas las cuñas analizadas en el Nivel 2390, con su ubicación, Dip y Dip Direction, peso y factores de seguridad sin sostenimiento y con sostenimiento. Se puede observar que el factor de seguridad aumento muy por arriba del factor 1,5 que es el que usa la empresa.

		DID	SIN SOSTE	NIMIENTO	CON SOSTE	NIMIENTO
TRAMO	DIP	DIP DIRECTION	PESO (tn)	FACTOR DE SEGURIDAD	PESO (tn)	FACTOR DE SEGURIDAD
	70	183				
1	78	2	0.101	0	0.101	6 500
1	86	32	0.101	U	0.101	6,599
	84	32				
	72	38				
	64	35				
	76	24				
	58	30				
	84	145				3,259
	60	40				
3	80	38	0,014	0	0,014	
3	65	52	0,014	O	0,014	
	65	20				
	85	45				
	62	250				
	66	20				
	84	195				
	82	195				
	74	34				
	78	160				
	76	32				
	78	38				
4	68	356	0,011	0	0,011	12,22
	74	354				
	74	340				
	74 18					
	74	15				

Tabla 45: Resumen de Características de cuñas analizadas N2390

3.1.3 DETERMINACION DEL SOSTENIMIENTO

A continuación, se hacen las recomendaciones específicas de sostenimiento, teniendo en cuenta la evaluación de la calidad del macizo rocoso en la zona de estudio y mediante la clasificación RMR y su correlación con Q y GSI.

SOSTENIMIENTO SEGÚN CLASIFICACION RMR

La Tabla 46 presenta los valores de calidad del macizo rocoso junto con las recomendaciones de sostenimiento correspondientes para cada situación.

TRAMO 1: corresponde al acceso a la basal, la clasificación RMR indica una calidad de **Roca Buena**. En este escenario, la recomendación de sostenimiento consiste en la implementación local de pernos de anclaje con un espaciado de 2 a 2,5 m según sea necesario.

TRAMO 2, TRAMO 3 Y TRAMO 4: la clasificación RMR asigna la categoría de **Roca Regular** para estos tramos. En vista a esto, se sugiere un sostenimiento recomendado que implica un empernado sistemático de 1,5 x 1,5 m, complementado con malla electrosoldada y Shotcrete de 5 cm de espesor.

TRAMO 5: la clasificación RMR sitúa la calidad en la categoría de **Roca Regular**. En consecuencia, se sugiere un sostenimiento que involucra un empernado sistemático de 1,3 x 1,3 m, junto con malla electrosoldada, además de la aplicación de Shotcrete con fibra de 5 a 10 cm de espesor.

	CALCULO DE SOSTENIMIENTO									
Tramo	Ubicación	Pr	RMR	Ancho de la Labor (b)m	Altura de Carga HP(m)	Densidad δ (Ton/m³)	Peso de Carga de Roca W (Ton/m²)	Sostenimiento RMR		
1	Acc		61,4	3,8	1,47	2,7	3,96	Bulonado local; espaciado de 2 - 2,5 m		
2	Basal NO	10 a 140	44,4	3,8	2,11	2,7	5,71	Bulonado Sistemático, espaciado 1,5X1,5 - 2 m y Malla- shotcrete 5 cm		
3	Basal NO	160 a 270	47,6	3,8	1,99	2,7	5,37	Bulonado Sistemático, espaciado 1,5X1,5 - 2 m y Malla- shotcrete 5 cm		
4	Basal SE	20 a 110	47,6	3,8	1,99	2,7	5,38	Bulonado Sistemático, espaciado 1,5X1,5 - 2 m y Malla- shotcrete 5 cm		
5	Basal SE	140 a 250	39,5	3,8	2,30	2,7	6,21	Bulonado sistemático 1,3X1,3 y Malla + Shotcrete 5 a 10 cm aplica- ción según avance		

Tabla 46: Sostenimiento según RMR

SOSTENIMIENTO SEGÚN CLASIFICACION DE BARTON

Se procede a calcular el sostenimiento utilizando la clasificación propuesta por Barton. Los resultados de este análisis se presentan en la Tabla 47 para su visualización.

TRAMO 1: en referencia a este tramo, se ha determinado de acuerdo a Barton que es de **Calidad Media**, con una categoría de sostenimiento nivel 1. En consecuencia, la recomendación es Sin Sostenimiento.

TRAMO 2, TRAMO 3, TRAMO 4 y TRAMO 5: estos 4 casos han sido categorizados como Roca de **Calidad Mala**, es decir como nivel 4 por ello se recomienda implementar un empernado sistemático en una grilla de 1,3 x 1,3 m.

	SOSTENIMIENTO SEGÚN Q DE BARTON									
Tramo	Ubicación	Pr	Q de Barton	ESR	Altura de la Labor (m)	De	Clasificación	Categoría de sostenimiento	Sostenimiento Recomenda- do	
1	Acc		7,66	1,6	3,8	2,4	MEDIA	1	Sin Sostenimiento	
2	Basal NO	10 a 140	1,33	1,6	3,8	2,4	MALA	4	Bulonado sistemático 1,3 x 1,3	
3	Basal NO	160 a 270	1,62	1,6	3,8	2,4	MALA	4	Bulonado sistemático 1,3 x 1,3	
4	Basal SE	20 a 110	1,92	1,6	3,8	2,4	MALA	4	Bulonado sistemático 1,3 x 1,3	
5	Basal SE	140 a 250	0,71	1,6	3,8	2,4	MUY MALA	4	Bulonado sistemático 1,3 x 1,3	

Tabla 47: Sostenimiento según Barton

SOSTENIMIENTO SEGÚN CLASIFICACION GSI

En la Tabla 48 que sigue, se presentan los resultados obtenidos de este análisis, siguiendo los criterios de GSI.

Tramo	Ubicación	GSI	GSI	Sostenimiento
1	Rampa	55,67	F/R, MF/B, FP/MB	Bulones Split Set sistemáticos 1,3 x 1,3 m + malla
2	Acc	44,63	F/M, MF/R,FP/B	Bulones Split Set, Helicoidales sistemáticos 1,3 x 1,3 m + malla
3	Basal SE	48,00	F/M, MF/R,FP/B	Bulones Split Set sistemáticos 1,3 x 1,3 m´+ malla
4	Basal SE	39,63	MF/M, FP/R,FP/M	Shotcrete 5cm + malla con bulones Helicoidales. 1,3 x 1,3 m
5	Basal NO	33,64	MF/M, FP/R,FP/M	Shotcrete 5cm + malla con bulones Helicoidales. 1,3 x 1,3 m
6	Basal NO	33,44	MF/M, FP/R,FP/M	Shotcrete 5cm + malla con bulones Helicoidales. 1,3 x 1,3 m

Tabla 48: Sostenimiento según GSI

TRAMO 1: de acuerdo con la clasificación GSI, la roca se ubica en la categoría **A** o **B**, por lo tanto, el sostenimiento recomendado a implementar será de manera eventual, utilizando pernos Split Set con una disposición en una grilla de 1,3 x 1,3 m.

TRAMO 2 Y TRAMO 5: debido a que estos sectores se clasifican como una roca tipo **D**, se sugiere la aplicación de Shotcrete con fibra (SHFP), junto con bulones Helicoidales o Swellex, en una distribución de 1,3 x 1,3 m. Además, se recomienda la utilización de malla electrosoldada.

TRAMO 3 Y TRAMO 4: estos sectores se clasifican como una roca tipo **C**, la recomendación indica la implementación de un sostenimiento mediante empernado sistemático con pernos Split Set o Helicoidales en una distribución de 1,3 x 1,3 m. Además, se recomienda el uso de malla electrosoldada.

ESPACIADO DE PERNOS O BULONES

Continuando con el método empleado para esta sección, en la Tabla 49 que sigue, se muestran los espaciamientos sugeridos según el tipo de pernos.

	Tn	Dp
SS (Tn)	8	5,33
He (Tn)	10	6,67
Sw (Tn)	12	8,00

SS: Perno Split Set

He: Perno Helicoidal

Sw: Perno Swellex

Tramo	Ubicación	Pr.	Ancho de la Labor (b)m	Altura de Carga HP(m)	Densidad δ (Ton/m³)	Factor de Seguridad	Espaciamiento Penos SS (S) m	Espaciamiento Penos He (S) m	Espaciamiento Penos Sw (S) m
1	Acc			1,47			1,16	1,30	1,42
2	Basal NO	10 a 140		2,11			0,97	1,08	1,18
3	Basal NO	160 a 270	3,8	1,99	2,7	1,50	1,00	1,11	1,22
4	Basal SE	20 a 110		1,99			1,00	1,11	1,22
5	Basal SE	140 a 250		2,30			0,93	1,04	1,14

Tabla 49: Espaciamiento de Pernos

3.1.4 MODELADO EN FHASE2

Utilizando el software PHASE2 se realizó un análisis del estado de tensiones en un sector del Nivel 2390. Para este análisis se empleó el criterio de Hoek-Brown tomando en cuenta los datos proporcionados por ROCLAB, presentados en la sección "3.1.1 Parámetros Geomecánicos del Macizo", que se aplicaron a los tres tipos de materiales presentes en la zona: la roca de caja compuesta por Monzonita, la veta de mineralización ORE y las áreas de alteración y considerando una profundidad de 409 metros.

• La tensión vertical estimada σv , considerando una densidad media de macizo rocoso, $\gamma = 0.027$ MN/m3 (2.7 t/m³), será:

$$\sigma v = \gamma * z = 0.027 (MN/m^3) * 409 (m) = 11,043 (MPa)$$

• La tensión horizontal media, estará dada:

$$\sigma h = k * \sigma v$$

El valor de k:

$$k = 0.25 + 7 * Eh * (0.001 + 1/z)$$

Donde Eh (expresado en GPa), es el módulo de deformación promedio del macizo superior medido en la dirección horizontal; para el caso de la Andesita inferimos un valor de Eh = 45 GPa.

$$k = 0.25 + 7 * 45 GPa * (0.001 + 1/409 m) = 1,34$$

De este modo, la tensión horizontal será:

$$\sigma h = k * \sigma v = 0.28 * 10.5 (MPa) = 14.97 (MPa)$$

La simulación del estado tensional se realizó en el tramo 4 tomándolo como referencia debido a que las condiciones se mantienen regulares para el resto de la basal.

Ilustración 77: A) Stage 1 sin excavación, tensiones en equilibrio. B) Stage 2 labor con excavación, tensiones en hastiales y vectores de deformación. C) Stage 3 sostenimiento colocado aumento factor de seguridad de la labor

El tramo 4 corresponde a la basal hacia el SE donde la calidad de la roca es REGULAR con un RMR promedio de 48,71, GSI de F/M, MF/R, FP/B Roca Tipo C. El sostenimiento se simula con pernos Split Set.

3.2 SIMULACION DE MINADO VETA ENCUENTRO INFERIOR

De manera complementaria a los objetivos del presente trabajo, se planteó la simulación de Minado LONG HOLE en Veta Encuentro Inferior aplicando el software Phase 2. Para dicha simulación se solicitó un corte transversal A - A´ a 150 m del acceso por Rampa Central hacia el sudeste y un corte B – B´ a 150 m hacia el noroeste. A continuación, en la Ilustración 78 se muestra la disposición de los mismos.

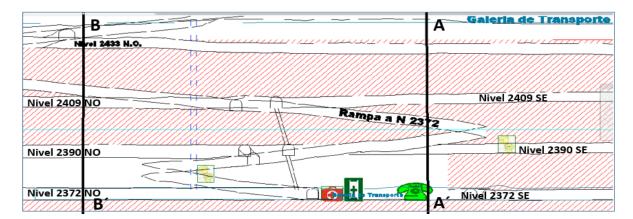


Ilustración 78: Disposición de los Cortes A-A` y B-B` de la Veta Encuentro

En la ilustración 79 se presenta el corte A – A´ generando discretización de las rocas y propiedades geomecánicas de los niveles de estudio y su entorno, se utiliza el factor de seguridad de 1,5 ya definido por el área de Geomecánica de la empresa.

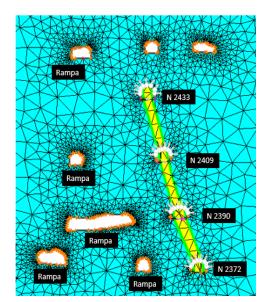


Ilustración 79: Corte A-A'

En la Ilustración 80 A se muestra el Stage 1 donde no están las excavaciones de los niveles a explotar, solo se presentan las excavaciones de las Rampas. En la Ilustración 78 B se exhibe el Stage 2 en el que están las excavaciones de los niveles y sostenimiento incluido, según lo analizado en los ítems anteriores. En estas dos imágenes se puede observar como el factor de seguridad se modifica, antes y después de las excavaciones.

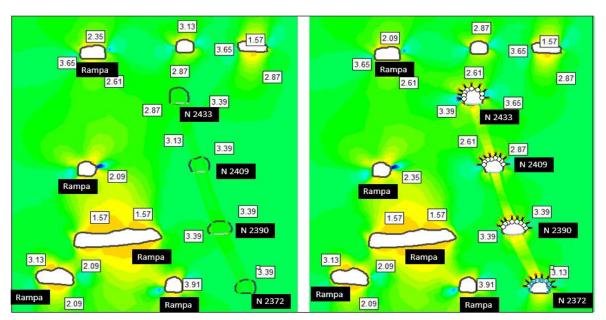


Ilustración 80: Corte AA', A) Stage 1, B) Stage 2

La Ilustración 81 A muestra el Stage 3 con el minado del primer tramo entre los Niveles 2372 y 2390, se puede observar como las tensiones se concentran en las inmediaciones del sector excavado, modificando el factor de seguridad por debajo de 1,5, sobre todo en caja piso y en sectores de Rampa.

En la ilustración 81 B se distinguen los vectores de deformación y su concentración hacia el sector de mayor apertura, en este caso la cámara abierta.

En la llustración 81 C, el Stage 4 muestra la cámara rellenada con material detrítico, como se puede advertir, las tensiones se equilibran mostrando una vez más el aumento del factor de seguridad. De esta manera con el relleno de la cámara se estabiliza nuevamente el sector.

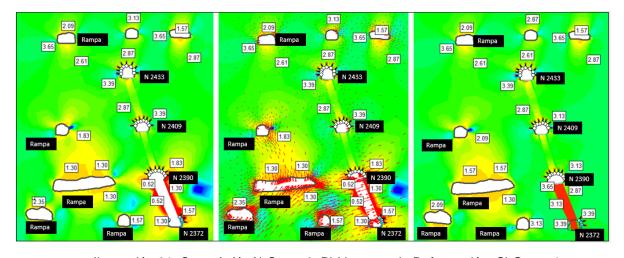


Ilustración 81: Corte A-A`, A) Stage 3, B) Vectores de Deformación, C) Stage 4

En la Ilustración 82 A, el Stage 5 muestra el minado de la cámara del segundo paño entre los Niveles 2390 y 2409. Se observa desequilibro en las tensiones en

inmediaciones de la cámara abierta, modificando los factores de seguridad sobre todo en la caja techo y caja piso.

En la Ilustración 82 B, el Stage 6 presenta el relleno detrítico de la cámara y la estabilización de las tensiones con un aumento de los factores de seguridad por arriba de 1,5.

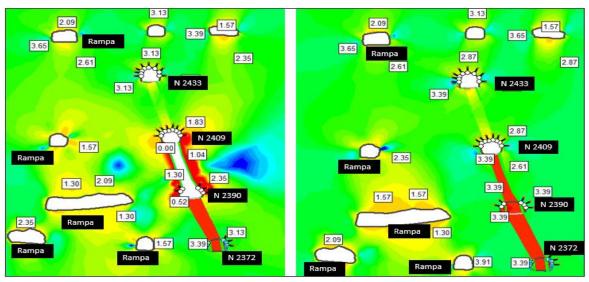


Ilustración 82: Corte A-A', A) Stage 5, B) Stage 6

En la Ilustración 83 A, el Stage 7 presenta la simulación de minado del último tramo de la cámara entre los Niveles 2409 y 2433. Se pueden notar las tensiones acumuladas en caja piso y sobre todo en caja techo, con factores de seguridad de 1,3 a menores, llegando a 0,26.

En la Ilustración 83 B, el Stage 8 muestra el relleno detrítico de la cámara generando una redistribución de las tensiones y por lo tanto un aumento de los factores de seguridad.

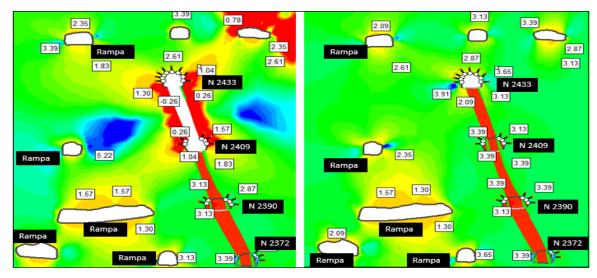


Ilustración 83: Corte A-A', A) Stage 7, B) Stage 8

La Ilustración 84 representa el corte B - B'. Al igual que en el corte A - A' se generaron 8 Stage, el análisis fue similar teniendo en cuenta los factores de seguridad obtenidos y considerando el recomendado como mínimo por el área de Geomecánica de la empresa.

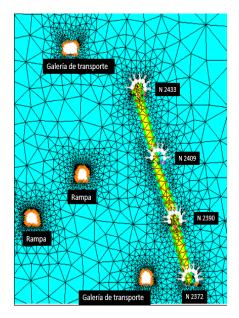


Ilustración 84: Corte B-B`

La Ilustración 85 A presenta el Stage 1 en el que solo se encuentran las excavaciones de rampa y galerías de transporte. La Ilustración 83 B enseña el Stage 2 en el que los niveles están excavados y sostenidos.

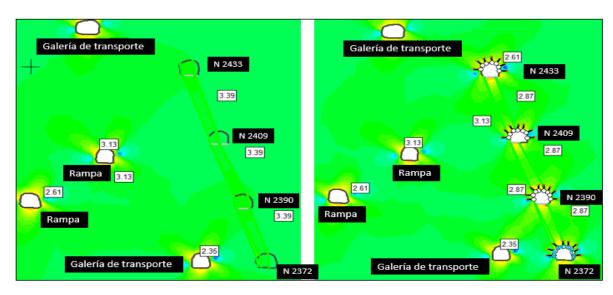


Ilustración 85: Corte B-B', A) Stage 1, B) Stage 2

En la Ilustración 85 A se muestra el Stage 3 donde se puede apreciar la cámara abierta y la concentración de las tensiones a sus alrededores, también se

ve disminuido el factor de seguridad en las inmediaciones de la galería de transporte cercana al nivel 2372, con valores inferiores a 1,3.

La Ilustración 85 B exhibe el Stage 4 con el relleno detrítico en la cámara y la redistribución de las tensiones, aumentando de esta manera los factores de seguridad por encima de 1,5. Se observa que presenta mayor estabilidad en la zona de la galería de transporte.

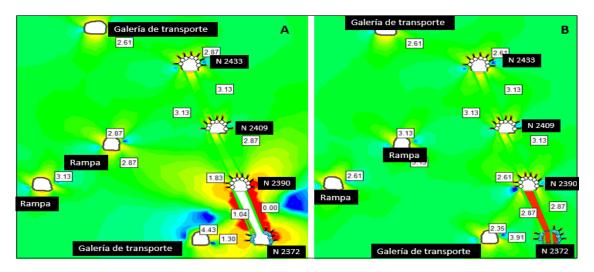


Ilustración 86: Corte B-B', A) Stage 3, B) Stage 4

En la Ilustración 86 A se muestra el Stage 5 con el minado de cámara entre los niveles 2390 y 2409, la cámara abierta con tensiones concentradas en las inmediaciones de la misma y los factores de seguridad bajos. Las rampas y galería de transporte no se ven afectadas ya que las mismas están más alejadas.

La Ilustración 86 B enseña los vectores de deformación concentrados y en dirección a la cámara.

En la Ilustración 86 C se exhibe el relleno detrítico en cámara y la estabilización de las tensiones con el incremento de los factores de seguridad.

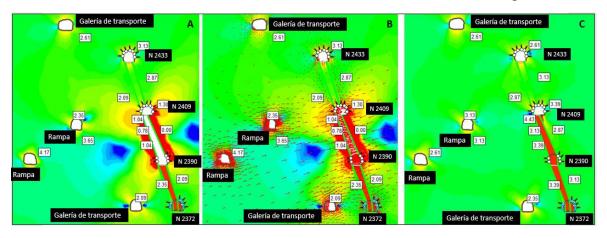


Ilustración 87:Corte B-B', A) Stage 5, B) Stage 6, C) Stage 7

La Ilustración 87 A presenta el Stage 7 con la cámara abierta del último tramo de minado, en el que se puede ver la concentración de las tensiones en las inmediaciones de la cámara y cercanías a la galería de transporte con una disminución del factor de seguridad.

La Ilustración 87 B muestra el Stage 8 con el relleno de cámara con material detrítico, la redistribución de las tensiones y la estabilización de la zona. Se observa aumento del factor de seguridad por arriba de 1,5.

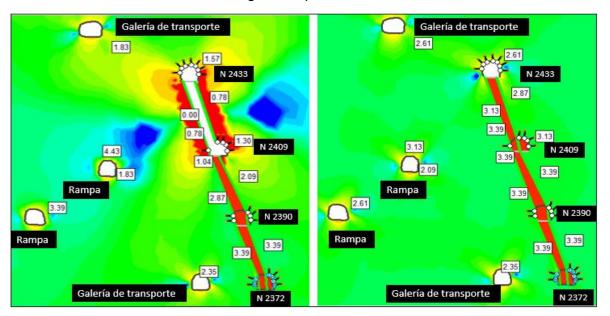


Ilustración 88: Corte B-B`, A) Stage 7, B) Stage 8

3.3 ANALISIS DE COSTOS EN SOSTENIMIENTO

La determinación de los costos se realiza con el correspondiente análisis de precios para cada tipo de sostenimiento planteado, es decir, se requiere la cuantificación técnica de la cantidad de recursos (mano de obra, materiales, equipo, maquinaria, herramientas, entre otros) que se necesitan para ejecutar el sostenimiento recomendado y su costo.

Para realizar el cálculo se agrupan los insumos en los rubros: MATERIALES, MANO DE OBRA Y EQUIPOS. Se determinan todos los insumos que intervienen en la colocación de cada sostenimiento, su aporte unitario o rendimiento expresado en cantidad, así como el costo del mismo en el mercado. Este costo incluye los costos de adquisición, transporte, almacenaje, etc.

Resulta importante destacar que para llevar a cabo este análisis se toma en cuenta el sostenimiento recomendado según GSI que se obtuvo como resultado en el presente trabajo, ya que es, además, el criterio que se aplica en Farallón Negro. De esta manera se plantean 3 tipos de sostenimiento:

Split Set sistemático 1,3x1,3 m + malla electrosoldada

- Helicoidales sistemático 1,3x1,3 m + malla electrosoldada
- Shotcrete 5 cm + malla con pernos Helicoidales 1,3 x 1,3 m

Para los 3 tipos se toma como base la colocación de 3 mallas electrosoldada SIMA (Ø 4.2", medidas 2,4x6 m, separación 100x100 mm) con un solapamiento de 20 cm, de forma transversal a la dirección longitudinal de la galería, obteniendo así un avance de 6 m (Ilustración 89).

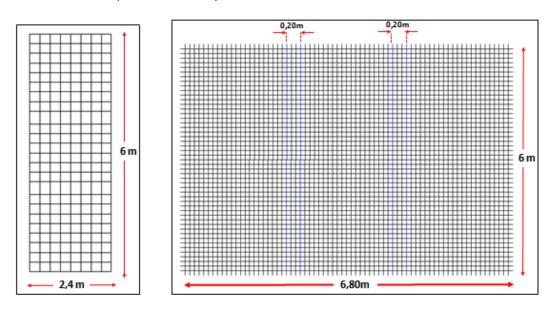


Ilustración 89: Disposición de las Mallas Electrosoldada

La distribución de los pernos es de sección romboidal de 1,3 x 1,3 m, recomendado por el área Geomecánica.

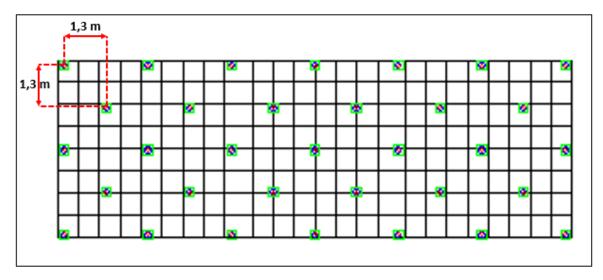


Ilustración 90: Distribución de pernos en la malla

En el siguiente análisis se explican los resultados obtenidos:

3.3.1 SPLIT SET SISTEMATICO 1,3x1,3 + MALLA ELECTROSOLDADA

Según la grilla de 1,3x1,3 m en una malla entran 33 pernos, en 3 mallas con 0,2 m de solapamiento se tienen 94 pernos (Tabla 50).

Mallas (ud)	1	3
Largo (m)	6	6
Ancho (m)	2,4	6,8
Superficie (m²)	14,4	40,8
Densidad de Pernos (ud)	33	94

Tabla 50: Cantidad de Pernos SS por Malla

Considerando la vida útil de las herramientas de perforación que se emplean en un Boltec, y la cantidad de metros perforados para pernos Split Set de Ø 39 mm y 1,80 m de longitud, se determinan las facciones de las mismas (Tabla 51). La vida útil de los aceros de perforación se determinó en base al uso de los mismos en la empresa.

Longitud de Pernos (m)	1,8	
Cantidad de m perforados (m)	168,3	
	Vida Util (m)	Faccion
Barra 2,4 m R32	24147	0,007
Culatin R32	19855	0,008
Manguito R32	7330	0,023
Broca 37 mm R38	2484	0,068

Tabla 51: Facción de los Elementos de Perforación

Según datos relevados en campo, un Boltec perfora entre 60 y 64 m en 4 h. Se toma el promedio de esta medición para el cálculo de la cantidad de horas que se requieren para perforar 168,30 m³.

Metros perforados (m)	62	168,30	
Tiempo (h)	4	11	

Tabla 52: Cantidad de Horas

Considerando la escala salarial de AOMA (Asociación Obrera Minera Argentina) para las categorías 1 y 3 a las que corresponden el Ayudante de Perforista y Perforista respectivamente, para un turno de 12 horas el salario será:

	Perforista	Ayudante de Perforista
Mensual (USD)	\$ 1.322,10	\$ 1.208,84
Diario (USD)	\$ 66,10	\$ 60,44
Por hora (USD)	\$ 5,51	\$ 5,04

Tabla 53: Salario del Personal

Una vez determinadas las cantidades/facciones de cada ítem, se procede a calcular el costo como se explicó anteriormente. Los resultados de este análisis se muestras la tabla 54.

SPLIT SET SISTEMATICO 1,3x1,3 + MALLA ELECTROSOLDADA				
MATERIALES	UNI- DAD	CANTI- DAD	PRECIO UNITARIO (USD)	PRECIO PARCIAL (USD)
Perno Split Set Ø39mm1,80m	Ud.	94	\$1.377,67	\$128.812,15
Malla Electrosoldada SIMA Ø4.2 Separación 100x100mm	Ud.	3	\$10.920,94	\$32.762,82
Barra de Extensión D 2.4 M - R32-H28-R28 90500951	facción	0,007	\$33.396,16	\$232,76
Adaptador de Culata COP 1838 R32-L=525MM 90516088	facción	0,008	\$33.850,92	\$286,94
Manguito de Acople R327993 3644	facción	0,023	\$828,48	\$19,02
Broca de 37 mm R28 - ESFERICA90505296	facción	0,068	\$5.813,52	\$393,89
		соѕто тот	AL DE MATERIALES (A)	\$162.507,57
PERSONAL	UNI- CANTI- SALARIO (USD			PARCIAL (USD)
Perforista	hs	11	\$5,51	\$59,81
Perforista Ayudante de Perforista	hs hs	11 11	\$5,51 \$5,04	\$59,81 \$54,69
Ayudante de Perforista	hs	11	. ,	. ,
Ayudante de Perforista	hs	11	\$5,04	\$54,69
Ayudante de Perforista COSTO TOTAL	hs DE MANO UNI-	11 DE OBRA +	\$5,04 CARGAS SOCIALES (B) COSTO OP. Y MAN-	\$54,69 \$114,50
Ayudante de Perforista COSTO TOTAL EQUIPO	hs DE MANO UNI- DAD	11 DE OBRA + CANTI- DAD 4	\$5,04 CARGAS SOCIALES (B) COSTO OP. Y MAN- TENIMIENTO (USD)	\$54,69 \$114,50 PARCIAL (USD)
Ayudante de Perforista COSTO TOTAL EQUIPO	hs DE MANO UNI- DAD hs	11 DE OBRA + CANTI- DAD 4 COSTO 1	\$5,04 CARGAS SOCIALES (B) COSTO OP. Y MAN- TENIMIENTO (USD) \$23,05 TOTAL DE EQUIPOS (C)	\$54,69 \$114,50 PARCIAL (USD) \$92,20
Ayudante de Perforista COSTO TOTAL EQUIPO Empernador Boltec S	hs DE MANO UNI- DAD hs DE OBRA +	DE OBRA + CANTI- DAD 4 COSTO T	\$5,04 CARGAS SOCIALES (B) COSTO OP. Y MAN- TENIMIENTO (USD) \$23,05 TOTAL DE EQUIPOS (C)	\$54,69 \$114,50 PARCIAL (USD) \$92,20 \$92,20

Tabla 54: Análisis de Costos SS + Malla Electrosoldada

3.3.2 HELICOIDALES SISTEMATICO 1,3x1,3 + MALLA ELECTROSOL-DADA

De manera similar se calcula para la grilla de 1,3x1,3. Se emplean 94 pernos (Tabla 55).

Mallas (ud)	1	3
Largo (m)	6	6
Ancho (m)	2,4	6,8
Superficie (m²)	14,4	40,8
Densidad de Pernos (ud)	33	94

Tabla 55: Cantidad de Pernos He por Malla

Considerando la vida útil de las herramientas de perforación que se emplean en un Boltec y la cantidad de metros perforados para pernos Helicoidales con Platina de 2,1 m de longitud y Ø 22 mm, se determinan las facciones de las mismas (Tabla 56).

Longitud de Pernos (m)	2,1	
Cantidad de m perforados (m)	196,35	
	Vida Util (m)	Faccion
Barra 2,4 m R32	24147	0,008
Culatin T38	19855	0,010
Manguito R32	7330	0,027
Broca 37 mm R38	2484	0,079

Tabla 56: Facción de Elementos de Perforación

Considerando que para una Roca Regular en la empresa se emplean 7 a 9 resinas por taladro y tomando el promedio, se determinan 748 resinas para 94 pernos.

Contided de Desires (d)	0	740
Cantidad de Resinas (ud)	8	748

Tabla 57: Cantidad de Resinas para 94 Pernos

Según datos levantados en campo, un Boltec perfora entre 60 y 64 m en 4 h, se toma el promedio de esta medición para el cálculo de la cantidad de horas.

Metros perforados (m)	62	196,35
Tiempo (h)	4	13

Tabla 58: Cantidad de Horas

Considerando la Escala Salarial de AOMA para un turno de 12 h, el salario será:

	Perforista	Ayudante de Perforista
Mensual (USD)	\$ 1.322,10	\$ 1.208,84
Diario (USD)	\$ 66,10	\$ 60,44
Por hora (USD)	\$ 5,51	\$ 5,04

Tabla 59: Salario del Personal

Una vez determinadas las cantidades/facciones de cada ítem, se procede a calcular el costo para la colocación de este tipo de sostenimiento. Los resultados de este análisis se muestras la tabla 60.

HELICOIDALES SISTEMATICO 1,3x1,3 + MALLA ELECTROSOLDADA				
MATERIALES	UNI- DAD	CANTI- DAD	PRECIO UNITARIO (USD)	PRECIO PARCIAL (USD)
Perno Helicoidal c/Platina 2mxØ22mm	Ud.	94	\$2.163,79	\$202.314,37
Cartucho de Resina 27-28x300mm	Ud.	748	\$211,74	\$158.381,52
Malla Electrosoldada SIMA Ø4.2 Separación 100x100mm	Ud.	3	\$10.920,94	\$32.762,82
Barra de Extensión D 2.4 M - R32-H28-R28 90500951	faccion	0,010	\$33.396,16	\$330,26
Adaptador de Culata COP 1838 R32-L=525MM 90516088	faccion	0,027	\$33.850,92	\$906,77
Manguito de Acople R327993 3644	faccion	0,079	\$828,48	\$65,49
Broca de 37 mm R28 - ESFERICA90505296	faccion	0,000	\$5.813,52	\$0,00
		соѕто то	TAL DE MATERIALES (A)	\$394.761,22
PERSONAL	UNI- DAD	CANTI- DAD	SALARIO	PARCIAL (USD)
Perforista	hs	13	\$5,51	\$69,78
Ayudante de Perforista	hs	13	\$5,04	\$63,81
COSTO TOTAL	DE MAN	O DE OBRA	+ CARGAS SOCIALES (B)	\$133,59
EQUIPOS	UNI- DAD	CANTI- DAD	COSTO OP. Y MAN- TENIMIENTO (USD)	PARCIAL (USD)
Empernador Boltec S	hs	4	\$23,05	\$92,20
	\$92,20			
COSTO TOTAL DE MATERIALES, MANO DE OBRA + CARGAS SOCIALES Y EQUIPOS (D)				\$394.987,01
En 6 m de avance el costo del sostenimiento es TOTAL				\$394.987,01
En 1 m de avance el costo del sostenimiento es COSTO POR METRO				

Tabla 60: Análisis de Costos He + Malla Electrosoldada

3.3.3 SHOTCRETE 5cm + MALLA CON PERNOS HELICOIDALES. 1,3 x 1,3m

Para este método se considera la aplicación a sección completa en una galería de 3,8x3,8 m, con 6 m de avance (longitud de malla) y 0,5 m de espesor como se muestra en la Imagen, de esta manera se deben cubrir 3,48 m³.

Perimetro (m)	Longitud (m)	Espesor (m)
11,60	6	0,05
Volumen (m³)	4	3,48

Tabla 61: Volumen a Sostener

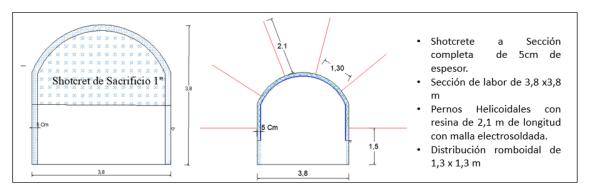


Ilustración 91: Aplicación Shotcrete a Sección Completa

Considerando que para un Mixer de 4 m³ se utilizan: 10 l de plastificante, 20 l de acelerante, 5 kg de fibra sintética, 1000 kg de cemento y 1,6 m³ de arena, para cubrir el volumen calculado se requiere:

	Cantidad p/4m ³	Cantidad p/ 3,48m³
SIKA VISCOCRETE (I)	10	8,700
SIKA SIGUNITA (I)	20	17,400
SIKA FIBER (kg)	5	4,350
CEMENTO CP40 (kg)	1000	870,000
ARENA (m³)	1,6	1,392

Tabla 62: Cantidad de Agregados para Shotcrete

Según la grilla de 1,3x1,3 en una malla entran 33 pernos, en 3 mallas con 0,2 m de solapamiento se tienen 94 pernos (Tabla 50).

Mallas (ud)	1	3
Largo (m)	6	6
Ancho (m)	2,4	6,8
Superficie (m²)	14,4	40,8
Densidad de Pernos (ud)	33	94

Tabla 63: Cantidad de Pernos He por Malla

Considerando la vida útil de los aceros de perforación que se emplean en un Boltec y la cantidad de metros perforados para pernos Helicoidales con Platina de 2,1 m de longitud y Ø 22 mm, se determinan las facciones de las mismas (Tabla 64).

Longitud de Pernos (m)	2,1	
Cantidad de m perforados (m)	196,35	
	Vida Util (m)	Faccion
Barra 2,4 m R32	24147	0,008
Culatin T38	19855	0,010
Manguito R32	7330	0,027
Broca 37 mm R38	2484	0,079

Tabla 64: Facción de Elemento de Perforación

Considerando que para una Roca Regular en la empresa se emplean 7 a 9 resinas por taladro y tomando el promedio, se determinan 748 resinas para 94 pernos.

Cantidad de Resinas (ud)	8	748
--------------------------	---	-----

Tabla 65: Cantidad de Resinas para 94 Pernos

Según datos levantados en campo, un Boltec perfora entre 60 y 64 m en 4 h, se toma el promedio de esta medición para el cálculo de la cantidad de horas requeridas para la perforación. De la misma manera, la colocación de shotcrete a sección completa para un avance 3 m, es decir un volumen de 1,74 m³, se realiza aproximadamente en 8 a 10 horas, se toman 9 horas.

Metros perforados (m)	62	196,35
Tiempo de Perforacion (h)	4	13
Volumen de Colocacion Shfp (m³)	1,74	3,48
Tiempo de Colocacion SHFP (h)	9	18

Tabla 66: Cantidad de Horas

Considerando la Escala Salarial de AOMA para un turno de 12 h y teniendo en cuenta que para la colocación del Shotcrete operan: 1 Operario Shfp (categoría 3), 2 Ayudante Shfp (categoría 1) y 1 Operario del Mixer (categoría 1), el salario será:

	Perforista	Ayudante de Perforista	Operario Shfp	Ayudante Shfp	Ayudante Shfp	Operario Mixer
Mensual (USD)	\$ 1.322,10	\$ 1.208,84	\$ 1.322,10	\$ 1.208,84	\$ 1.208,84	\$ 1.208,84
Diario (USD)	\$ 66,10	\$ 60,44	\$ 66,10	\$ 60,44	\$ 60,44	\$ 60,44
Por hora (USD)	\$ 5,51	\$ 5,04	\$ 5,51	\$ 5,04	\$ 5,04	\$ 5,04

Tabla 67: Salario del Personal

Una vez determinadas las cantidades/facciones de cada ítem, se procede a calcular el costo para la colocación de este tipo de sostenimiento. A continuación, se muestra la tabla con este análisis (Tabla 67).

SHOTCRETE 5cm + MALLA CON PERNOS HELICOIDALES. 1,3 x 1,3m					
ELEMENOS	UNI- DAD	CANTI- DAD	PRECIO UNITARIO (USD)	PRECIO PARCIAL (USD)	
Sika ViscoCrete 9100	I	8,700	\$4,34	\$37,76	
Sika Sigunita L-500	I	17,400	\$19,54	\$339,91	
Sika Fiber FORCEBALDE	kg	4,350	\$3.851,20	\$16.752,72	
Cemento CP40	kg	870,000	\$36,09	\$31.398,30	
Arena	m³	1,392	\$22,77	\$31,70	
Perno Helicoidal c/Platina 2mxØ22mm	Ud.	93,500	\$2.163,79	\$202.314,37	
Cartucho de Resina 27-28x300mm	Ud.	748,000	\$211,74	\$158.381,52	
Malla Electrosoldada SIMA Ø4.2 Separación 100x100mm	Ud.	3,000	\$10.920,94	\$32.762,82	
Barra de Extensión D 2.4 M - R32-H28-R28 90500951	faccion	0,008	\$33.396,16	\$271,56	
Adaptador de Culata COP 1838 R32-L=525MM 90516088	faccion	0,010	\$33.850,92	\$334,76	
Manguito de Acople R327993 3644	faccion	0,027	\$828,48	\$22,19	
Broca de 37 mm R28 - ESFERICA90505296	faccion	0,079	\$5.813,52	\$459,53	
	\$443.107,14				
PERSONAL	UNI- DAD	CANTI- DAD	SALARIO (USD)	PARCIAL (USD)	
Perforista	hs	13	\$5,51	\$69,78	
Ayudante de Perforista	hs	13	\$5,04	\$63,81	
Operario Shfp	hs	18	\$5,51	\$99,16	
Ayudante Shfp	hs	18	\$5,04	\$90,66	
Ayudante Shfp	hs	18	\$5,04	\$90,66	
Operario Mixer	hs	18	\$5,04	\$90,66	
COSTO TOTA	\$504,73				
COSTO TOTA					
EQUIPOS	UNI- DAD	CANTI- DAD	COSTO OP. Y MAN- TENIMIENTO (USD)	PARCIAL (USD)	
	_	_		PARCIAL (USD) \$92,20	
EQUIPOS	DAD	DAD 4	TENIMIENTO (USD)		
EQUIPOS	DAD hs	DAD 4 COSTO	\$23,05 TOTAL DE EQUIPOS (C)	\$92,20	
Equipos Empernador Boltec S	hs DE OBRA +	4 COSTO	\$23,05 TOTAL DE EQUIPOS (C)	\$92,20 \$92,20	

Tabla 68: Análisis de Costos Shotcrete + He + Malla

A continuación, se presenta un resumen de los costos calculados por cada método planteado. Se puede observar que el primer sostenimiento es el menos costoso. Esto se debe a que en los otros métodos las resinas requeridas encarecen buena parte de la operación. Lógicamente la elección se hará en base a las características de cada sostenimiento y su aporte a la solución del problema planteado.

METODOS RECOMENDADOS	COSTO POR METRO (USD)
SPLIT SET SISTEMATICO 1,3x1,3 + MALLA ELECTROSOLDADA	\$27.119,05
HELICOIDALES SISTEMATICO 1,3x1,3 + MALLA ELECTROSOLDADA	\$65.831,17
SHOTCRETE 5cm + MALLA CON PERNOS HELICOIDALES. 1,3 x 1,3m	\$73.950,68

Tabla 69: Resumen de Costos

CAPITULO IV: CONCLUSIONES Y RECOMENDACIONES

• En base a los resultados obtenidos en el mapeo geomecánico, se encuentra la presencia de tres tipos de materiales o rocas en los niveles de estudio: una roca de caja Monzonita de grano fino con una resistencia a la compresión alta superior a 180 Mpa. Una zona de alteración mayormente contacto de veta y caja distinguiendo una alteración argílica avanzada de color anaranjado o grisáceo que presenta una resistencia a la compresión inferiores a 120 Mpa. Por último, la veta u Ore donde se diferencian dos tipos, una de color negro con manganeso y una rosada con presencia de cuarzo y carbonatos blancos que presentan resistencias que pueden ir entre 150 a 100 Mpa.

En cuanto a la clasificación geomecánica, según el criterio de RMR de Bienawski, la calidad de la roca en estos sectores varía entre roca BUENA (RMR=62), REGULAR (RMR=46) y MALA (RMR=35). De acuerdo al criterio de GSI se observan cuatro calidades de roca: A, B, C y D donde la primera es una roca de buena calidad y la última de mala calidad, observándose estos 4 tipos en los sectores de estudio.

• De acuerdo al mapeo estructural realizado, y complementado con los softwares aplicados (Dips y Unwedge), se determinó la existencia de tres a cuatro familias de diaclasas principales, como la que se encuentra en el Tramo 6 de los Niveles 2429 y 2433 con DIP= 84° y DIPD=177°, más algunas aleatorias, además de distinguir como falla principal a la veta mineralizada.

Se determinaron las cuñas de riesgo que podrían desprenderse por caída libre desde el techo de la labor debido a la cuña está abierta con la base hacia el piso de la galería, por ejemplo, la cuña 8 que se presenta en el Tramo 2 de los Niveles 2429 y 2433 que tiene un peso de 61,17 t y un factor de seguridad 0. Estas, a partir de la simulación de sostenimiento con pernos Split Set y Helicoidales, resultaron con una mejora de su condición al aumentar su factor de seguridad, por arriba de 1,5. Para este caso, el FS aumenta a 4.045.

Se presentaron casos, sobre todo en corona, como la Cuña 8 del Tramo 3 en los Niveles 2429 y 2433 con un peso de 0,054 t y volumen reducido para los que

se recomienda tener en cuenta la eliminación de la condición mediante saneo manual o mecanizado.

- Mediante las simulaciones y análisis tensionales realizadas con el software Phase 2 se observa que los sectores más comprometidos en las excavaciones son corona y hastiales, mostrando factores de seguridad bajos en las inmediaciones de las labores. Sin embargo, los mismos aumentan su FS con la aplicación de sostenimiento por lo que si bien son excavaciones temporales debido a que serán minadas posteriormente, el sostenimiento de las mismas proporciona la seguridad adecuada para el personal y equipos que desarrollan tareas en el sitio.
- Para Rocas BUENAS o Tipo A según GSI, no es necesario sostener, pero se recomienda el saneo sistemático de las labores para evitar eventuales caídas de bloques sueltos y así mantener las buenas condiciones del sector.

Para Rocas de calidad **REGULAR** o **tipo B** o **C** se recomienda la colocación de pernos Split Set (1.8 m de longitud) o Helicoidales (2.1 m de longitud) con resina, más malla electrosoldada con una distribución romboidal de 1,3 x 1,3 m según el estándar de colocación empleado por la empresa.

En zonas de roca de calidad **MALA** o **Tipo D** se recomienda el uso de Shotcrete con fibra polipropilénica y pernos Helicoidales de 2,10 m de longitud con resina con similar distribución, romboidal de 1,3 x 1,3 m. No se recomienda el uso de pernos Split Set debido a que, por la mala calidad de la roca, los taladros sufren sobre excavación generando una perforación de mayor diámetro y al funcionar por fricción, ésta no es la mejor condición para su uso.

Para todos los casos se sugiere la colocación longitudinal de la malla debido a que presenta una mejor adaptación a la superficie a cubrir además que se logra un avance efectivo de sostenimiento de 6 m.

 A partir del análisis de costos se observa que la colocación de los pernos Helicoidales es un 121% más costosa que la de pernos Split Set, no solo por el precio de adquisición de los mismos sino también por el consumo de resinas. Se puede optar por el uso de Split Set en lugar de He para disminuir costos en terrenos de calidad media a buena, no obstante, como se mencionó anteriormente,

estos últimos no tienen buen funcionamiento en rocas de mala calidad por lo que se propone implementar el uso de pernos expansibles ya que los mismos ofrecen mayor capacidad portante por lo que se reduciría a densidad de pernos en la grilla, se adaptan a las condiciones del taladro y no necesitan el uso de elementos complementarios como la resina, resultando más económicos y eliminando por completo el uso de pernos Helicoidales.

- Se recomiendo ensayar la superposición de 2 esquemas de sostenimiento para la reducción de costos, por ejemplo: la presentación y solapamiento de Mallas con pernos Split Set y completar la grilla con pernos Helicoidales respetando el espaciado establecido.
- De manera complementaria se plantea realizar pruebas de Pull Test a los pernos y ensayos de compresión al Shotcrete para tener mayor certeza del buen funcionamiento de los mismos y aumentar la confianza en el sostenimiento empleado.
- Se recomienda incluir, dentro de la cartilla GSI que utiliza la empresa, los parámetros RMR y el tiempo de auto soporté y claro sin sostener. Con esto se proporciona un sistema claro, completo y de fácil manipulación y comprensión para que todos los empleados del sector sepan distinguir el tipo de sostenimiento empleado en función de la calidad de roca que se presenta.
- Para culminar, mediante la simulación de minado se puede observar la necesidad de relleno para la estabilización de las labores luego de las aperturas de cada tramo de cámaras planteados entre niveles, que dejan un factor de seguridad por debajo del establecido como seguro (0,26 a 1,3), aumentando por encima de 2 con la aplicación del material detrítico.

CAPITULO V: REFERENCIA BIBLIOGRAFICA

- Sasso, A y A Clark, 1999. El grupo Farallón Negro: evolución magmática, hidrotermal y tectónica e implicancias para la metalogénia de cobre-oro en el retroarco andino, Catamarca. En Recursos Minerales de la República Argentina (Ed. E. Zappettini), Instituto de Geología y Recursos Minerales SEGEMAR, Anales 35: 1437-1450, Buenos Aires.
- Alderete, M. C., 1999. Distrito Farallón Negro-Alto de la Blenda, Catamarca.
 En: Recursos Minerales de República Argentina (Ed. E. O. Zappettini) Instituto de Geología y Recursos Minerales SEGEMAR, Anales 35: 1637-1642, Buenos Aires.
 - Hoek Brown, 1980. "Excavaciones Subterráneas en Roca".
 - Luis I. Gonzales de Vallejos, 2004. "Ingeniería Geológica"
- Paper Hoek. "Estimación de la resistencia de macizos rocosos en la práctica.
 - Roberto Adrián Mejibar, 1993. "Ingenieria de Aberturas Tomo1".
 - Roberto Adrián Mejibar, 1993. "Ingenieria de Aberturas Tomo1".
- E. Hoek, C. Carranza-Torres, B. Corkum, 2002. "El criterio de rotura de HoekBrown".
- Rocscience Inc, 2004 Análisis de la resistencia del macizo rocoso mediante el criterio de rotura de Hoek-Brown - Guía del Usuario.
- Ingeniero de Minas JAIME WILLIAM JOJOA MUÑOZ, Sogamoso, febrero 2010. "SOSTENIMIENTO DE MINAS"
 - Manual Tutorial Phase2 versión 6.0.
- "Cerro Rico" AREQUIPA-PERU, Sostenimiento en Labores Mineras Subterráneas.
- E. Hoek, P.K. Kaiser and W.F. Bawden, SUPPORT OF UNDERGROUND EXCAVATIONS IN HARD ROCK

- Antonio Karluzovic, "SISTEMA DE CALIFICACIÓN Y CLASIFICACIÓN
 GEOTÉCNICA DE MACIZO ROCOSOS"
- Antonio Karluzovic, "SISTEMA DE CALIFICACIÓN Y CLASIFICACIÓN GEOTÉCNICA DE MACIZO ROCOSOS MÉTODO DEL ÍNDICE Q".
 - Arioglu Birön, 1987. "Diseño de ademes en minas".

ANEXOS

ANEXO I: MAPEO GEOMECANICO - RMR

En este anexo se describe y muestra la manera en que se realizó el relevamiento de los datos de campo.

1. DATOS ESTRUCTURALES

Para el relevamiento de las estructuras presentes en cada sector de estudio, fue necesario contar con una brújula geológica del tipo Brunton, con la que se tomaron datos de buzamiento y dirección de buzamiento de las estructuras presentes. Estos se registraron en planillas (ANEXO4) y planos (ANEXO3).

Ilustración 92: Toma de datos de Buzamiento y Dirección de Buzamiento en campo

Ilustración 93: Plano de Falla en Nivel 2409

2. DETERMINACION DE PARAMETROS GEOMECANICOS

Los parámetros Geomecánico que se relevaron en campo se describen a continuación.

a) Resistencia de la Roca

Para poder determinar la resistencia de la Roca utilización un Martillo de Schmidt, proporcionado por el área de Geomecánica

El proceso de estimación de la resistencia a la compresión simple a partir de este ensayo se desarrolla en tres pasos:

- En primer lugar, se debe establecer la orientación de aplicación del martillo la cual fue de 90°, de manera perpendicular a la cara de la roca.
- En segundo lugar, se debe verificar que la muestra tenga una superficie lisa y sin presencia de discontinuidades. Seguidamente, se realizan al menos 10 mediciones (de las cuales se descartan la mitad (aquellas que presenten los valores inferiores) y se determina la media con las mediciones restantes.
- En tercer lugar, se necesita la tabla de "Dispersión media de valores de resistencia para la mayoría de rocas" (Figura N°4; capitulo 2).

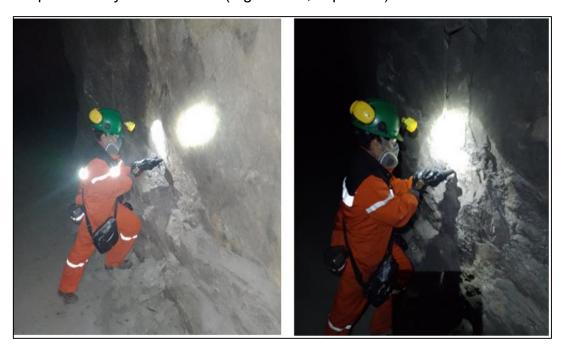


Ilustración 94: Uso del Martillo de Schmidt en campo, toma de UCS

b) RQD (Índice de calidad de la Roca según Deere

La determinación del RQD se realizó directamente sobre la pared del macizo rocoso. En cada zona de estudio se tomó 1 metro de longitud y sobre eso se midieron los fragmentos mayores a 10cm, obteniendo así los valores de RQD en cada progresiva.

Ilustración 95: Medición de RQD

c) Espaciamiento entre Discontinuidades

Ilustración 96: Espaciado entre Discontinuidades

El valor de este parámetro se tomó en cada zona analizada. Se midió la distancia perpendicular entre discontinuidades y en función de las tablas de referencia ya mencionadas en el Capítulo 2. Tabla 2 se registraron los valores correspondientes en cada tramo.

d) Estado de las Discontinuidades

En este caso se observó el estado del macizo rocoso, su rugosidad, abertura, rellenos, meteorización, etc. Cada uno de estos parámetros se tomaron según tablas de valores ya descriptos en el capítulo 2.

Ilustración 97: Estado de las discontinuidades

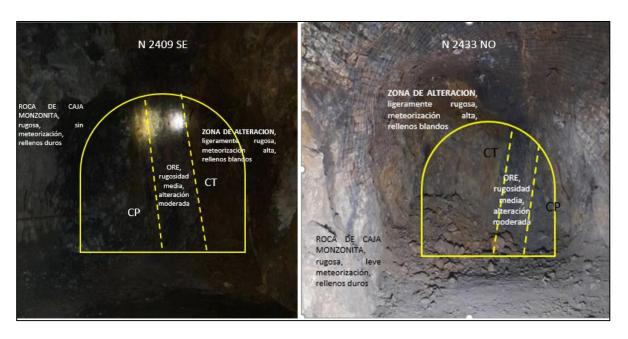


Ilustración 98: Estado de los frentes en N2433 Y N2409

e) Presencia de Agua:

En los sectores de estudio no se observó la presencia de agua en grandes cantidades, sólo la proveniente de infiltración de niveles superiores producto del agua de perforación, por lo que el parámetro se lo midió de manera general como sectores húmedos.

Ilustración 99: Presencia de agua producto de la perforación

ANEXO II: SOFTWARES UTILIZADOS

DIPS

Es un programa diseñado para estudiar información estructural, es decir las orientaciones de las discontinuidades basadas en datos geológicos, de la misma manera que si se usara una red estereográfica o red estereoscópica, permitiéndole al usuario analizar y visualizar los datos estructurales siguiendo las mismas técnicas empleadas en estereoscópicos manuales. Esto es que con su aplicación se puede lograr un estudio de los mecanismos de falla más probables y un análisis estadístico de todas las familias de discontinuidades, cuyas orientaciones predominantes interceptadas entre sí, pueden formar cuña.

Para su mejor uso, orientando su aplicación a los fines de este trabajo, se deben ajustar una serie de controles a continuación explicados:

- 1) En la pestaña "Setup" se selecciona la opción "Job control".
- 2) Se abre un cuadro de diálogo en el que se verifica que el formato de la orientación global "Global Orientation Format" sea "DIP/DIP DIRECTION". Aquí también se puede agregar el "título de proyecto".

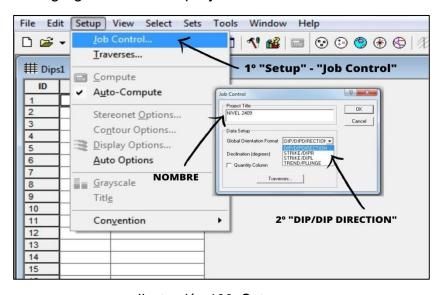


Ilustración 100: Setup

3) Nuevamente en la pestaña "Setup" se elige la opción "Convention", donde se verifica que la opción "Plan Vector" se encuentre activada.

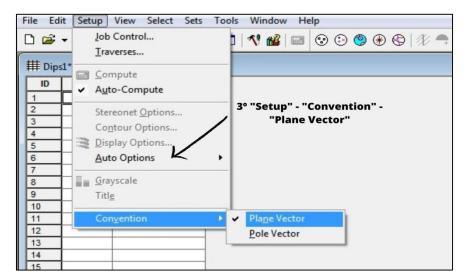


Ilustración 101: Convention

Verificados estos controles, el programa está listo para la carga de datos:

- 4) Se cargan las orientaciones teniendo en cuenta que: "DIP" es el buzamiento y "DIP DIRECTION" es el azimut.
- 5) Se selecciona la vista "Pole Plot". El resultado es una nueva ventana que muestra los polos de las proyecciones de los planos de discontinuidad cargados, en este caso 2 polos.

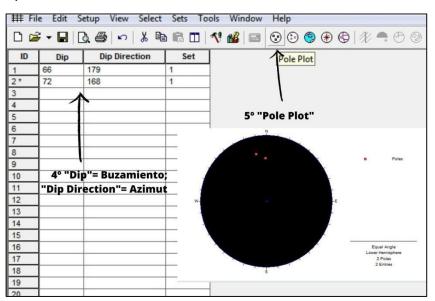


Ilustración 102: Dip

6) Se elige la vista "Contour Plot" que muestra las áreas de concentración de puntos en diversos colores, según la frecuencia de los datos cargados. También proporciona una tabla de referencia donde se indica por color, la cantidad de coincidencia de los valores.

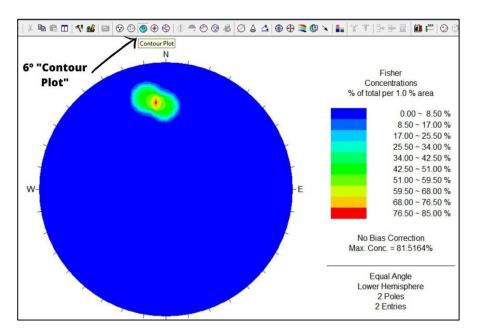
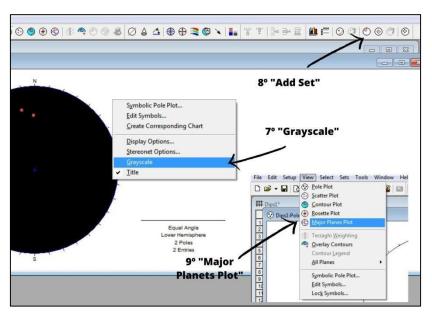



Ilustración 103: Contour Plot

- 7) Se posiciona nuevamente en la vista "Pole Plot", se hace clic derecho y en el cuadro de diálogo habilitado se activa "Grayscale".
- 8) Luego se escoge el set "Add Set Windows" que permite representar gráficamente la familia de diaclasas predominantes y dentro de la figura, la inclinación y la dirección de inclinación de dichas familias.
- 9) En la pestaña "View" se selecciona la opción "Major Planets Plot" para activar las referencias a los planos obtenidos, es decir Identificación, Dip y Dip Dierection.

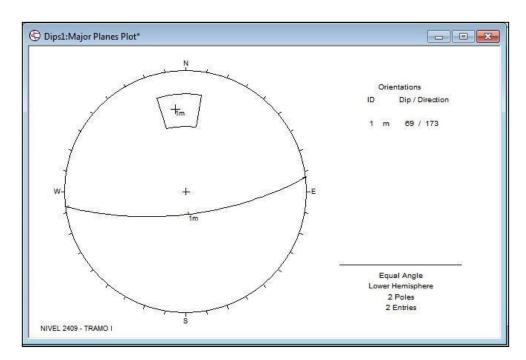


Ilustración 104: Valores agrupados

De esta manera se agrupan en forma de campos los valores próximos y se obtiene una representación de las familias de diaclasas, pudiendo determinar su inclinación y dirección de inclinación. Esta Información será agrupada en 2 graficas distintas para una mejor visualización y orden.

SOFTWARE UNWEDGE

Es un programa que permite analizar la estabilidad de cuñas y visualizar, en animaciones en 3D, las discontinuidades estructurales que intersectan en excavaciones subterráneas. Admite calcular el factor de seguridad de cuñas y modelar la influencia de los elementos de sostenimiento en su estabilidad, entre otras aplicaciones.

Está diseñado para excavaciones en macizos rocosos competentes, con discontinuidades persistentes y donde no se producen roturas inducidas por el estado tensional. Se supone que los desplazamientos se producen exclusivamente a lo largo de las discontinuidades ya que los bloques se consideran rígidos. Las cuñas que se pueden formar son tetraédricas y están definidas por 3 planos de discontinuidad más una cara libre de la excavación, que puede ser el techo, el piso, los hastiales o los extremos de la cavidad. Si existieran cuatro planos de discontinuidad, el programa determina los bloques tetraédricos que se pueden formar por combinación de los cuatro planos. A su vez también considera que la excavación mantiene la sección transversal constante a lo largo de todo su eje.

Seguidamente se ofrece un procedimiento de uso del software de acuerdo al fin para el que fue aplicado en este trabajo.

- 1) Una vez abierto el software, en la pestaña "Opening" se selecciona la opción "Add Opening Section" que permite introducir la sección que representa la labor objeto de este estudio.
- 2) Para ello luego se selecciona la opción "Imput DXF" que lleva a un cuadro de dialogo desde el que se selección la sección en cuestión. Esto también se puede realizar introduciendo en la parte inferior derecha las coordenadas de la labor.

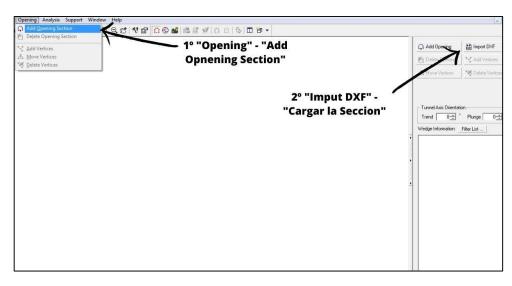


Ilustración 105: Opening - Imput DXF

3) En la pestaña "Analysis" se elige la opción "Project Settings", se despliega un cuadro de diálogo donde se puede modificar el título del proyecto y determinar las unidades de presión.

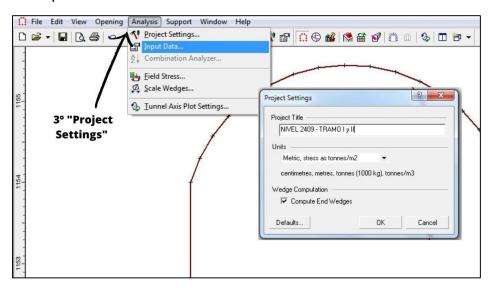


Ilustración 106: Crear proyecto

4) Nuevamente en la pestaña "Analysis" se selecciona "Imput Data". Desplegado el cuadro, en la pestaña "General" se introduce la orientación del eje de la excavación que viene dado por "Trend" (dirección) y "Plunge" (inclinación), en este caso la cavidad subterránea es horizontal por lo que el valor de "Plunge" es igual a cero. Luego se introduce el peso específico de la roca.

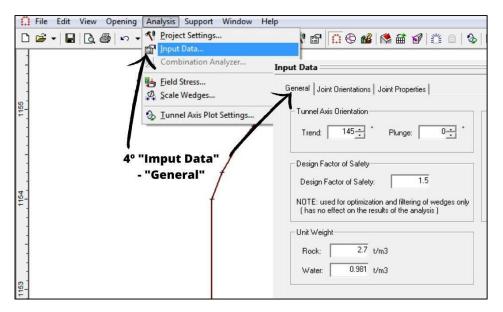


Ilustración 107: Join Orientations

5) Para definir las orientaciones de las discontinuidades, en el mismo desplegable se selecciona "Join Orientations". A continuación, para cada familia de discontinuidades, se carga

el buzamiento y dirección de buzamiento, DIP y DIP DIRECTION respectivamente. Este programa considera cuñas tetraédricas formadas por 3 planos.

En la opción "Join Properties" se pueden definir las propiedades resistentes de los diferentes tipos de discontinuidades que se identifiquen, determinando el criterio a considerar en la resistencia de las juntas, por ejemplo.

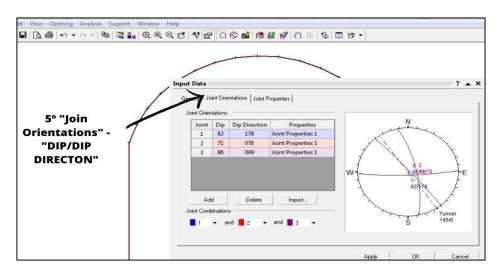


Ilustración 108: Dip /Dip direction

6) Para ver las cuñas en 3D alrededor de la excavación, en la barra de comando se hace click en la opción "3D Wedge View" que despliega una pantalla emergente proporcionando la vista tridimensional de la cavidad subterránea y las cuñas a su alrededor, además aparecen 3 vistas ortogonales (en planta, transversal y longitudinal). En el recuadro de la parte derecha de la pantalla se pueden ver todos los datos de las cuñas generadas. Haciendo cick en la pestaña "filter list" se pueden seleccionar las propiedades o parámetros de las cuñas que aparecerán en el recuadro. Haciendo doble click en una de las vistas (por ej.: perspectiva), se obtiene la vista completa individual seleccionada.

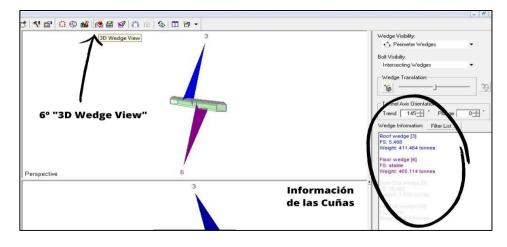


Ilustración 109. Cuñas y sus caracteristicas

Se busca estabilizar las cuñas determinadas, para ello se pre dimensiona el sostenimiento para saber si es suficiente para calzar las cuñas y de esta manera aumentar el factor de seguridad al del proyecto.

7) En la barra de herramientas, se selecciona el icono "Perimeter Support Designer" que muestra las cuñas en una sección transversal del túnel. Se puede sostener la cuña diseñando una serie de pernos puntuales o verificar un sostenimiento tipo y ver como interactúa. En este caso se va a evaluar un sostenimiento tipo de pernos Split Set en una malla de 1,3 x 1,3. En la pestaña "Support" se selecciona "Bolt Properties" que despliega una ventana donde se determina el tipo de perno a emplear y las propiedades de los mismos.

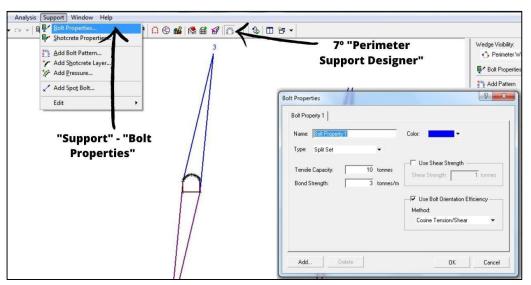
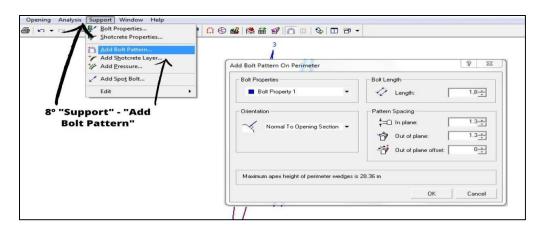



Ilustración 110: soporte

8) Nuevamente en la pestaña "Support" se selecciona "Add Bolt Pattern" para introducir el bulonado. Se despliega una ventana con el sostenimiento seleccionado en el paso anterior, donde se determina la longitud del perno (lenght) y la malla de separación de los mismos (in plane – out of plane). En el recuadro "orientation" se define la manera en que se va a colocar los bulones, en este caso se selecciona "Normal To Opening Section", es decir normal a la sección.

9) Se coloca el cursor en uno de los lados de la labor, haciendo click izquierdo se posiciona el 1er perno, luego se recorre el perímetro de la galería para colocar los siguientes y haciendo nuevamente click izquierdo, se finaliza la colocación de los mismos. En el lateral derecho de la pantalla "Wedge Information" se puede observar si el factor de seguridad ha aumentado con el diseño del sostenimiento.

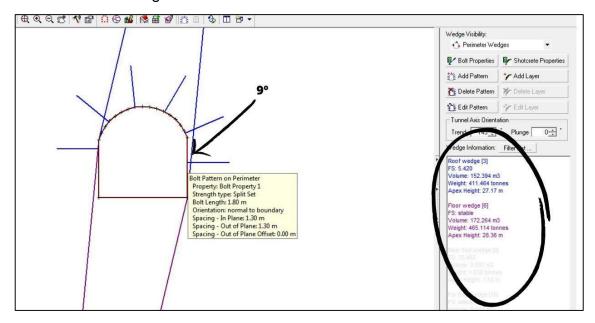


Ilustración 111: Cuñas, soporte y caracteristicas

SOFTWARE ROCK DATA

El software ROCK DATA es un programa que nos permite la determinación de parámetros geotécnicos del macizo rocoso ante distintos esfuerzos, mediante la introducción de algunos parámetros básicos obtenidos de ensayos, de estaciones o levantamientos geomecánico.

Cada uno de los parámetros utilizados como entrada en el criterio de HoekBrown "sigci, GSI, mi y D" se introduce mediante la barra lateral de forma manual o se pueden estimar mediante tablas y ábacos incorporados en el RocData.

- 1. introducción de parámetros de Hoek Brown
- a) SIGCI: puede ser introducido de forma manual o bien con tablas. Ilustración
 N° 1
- b) **GSI:** parámetro introducido manualmente o bien utilizando el grafico disponible. Ilustración n°2
- c) **mi:** depende del tipo de roca y se lo puede estimar con la tabla del programa. Ilustración N°3
- d) **D**: este parámetro depende de las características de la labor, y de la voladura. Ilustración N°4.

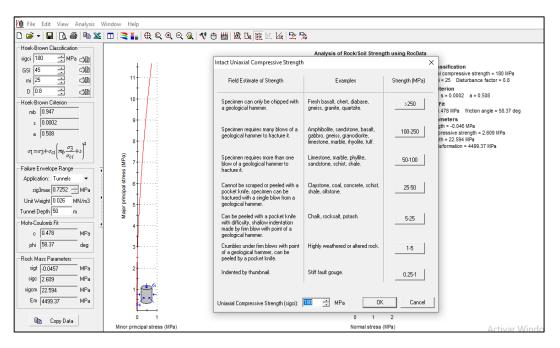


Ilustración 112: Introducción de los parámetros

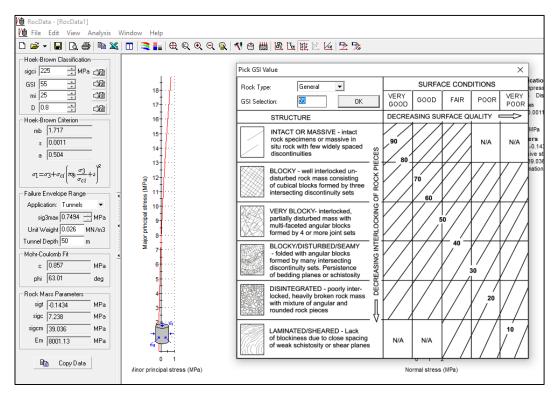


Ilustración 113: Parámetro GSI

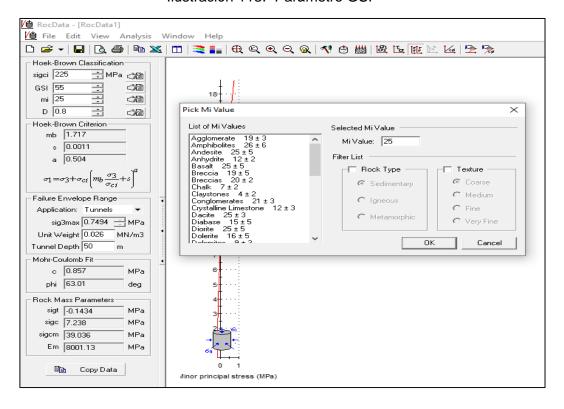


Ilustración 114: Tipo de roca

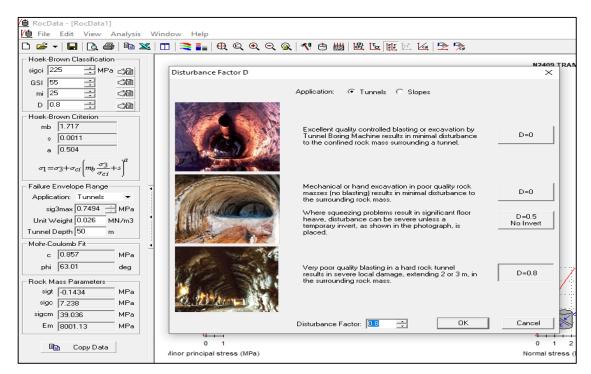


Ilustración 115: Parámetro D

Luego de esta secuencia, el software proyecta las envolventes de rotura de los macizos en el espacio de tensiones principales σ 1 vs σ 3, el espacio de tensiones de cizalla y tensiones normales (τs vs σ n).

En la parte inferior de la barra lateral se puede observar que el programa calcula además otros parámetros del macizo rocoso como sigt (resistencia a la tracción del macizo rocoso), sigc (resistencia compresiva uniaxial del macizo), sigcm (resistencia compresiva global del macizo rocoso) y Em (módulo de deformación del macizo rocoso).

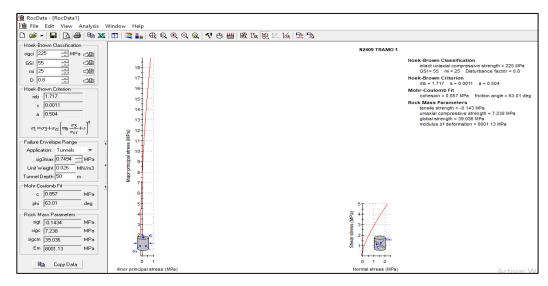


Ilustración 116: Resultados obtenidos

SOFTWARE PHASE 2

Es un software que se emplea en la toma de decisiones relacionadas al diseño minero y secuencia de minado y diseño y dimensionamiento de estructuras tales como accesos, pilares, sostenimiento, entre otros. Valida la resolución por el Método de los Elementos Finitos (MEF) y permite simular el comportamiento de rocas y otros materiales estructurales que se ajustan a modelos elásticos, elastoplásticos y viscoelásticos, en dos dimensiones. Se emplea para la resolución de problemas tenso-deformacionales a raíz de que el macizo rocoso se encuentra sometido a cargas debido a su propio peso, fuerzas externas, tensiones in situ, cambio de temperatura, fuerzas dinámicas, etc. y se requiere para determinar las tensiones y deformaciones actuantes en el mismo.

El MEF consiste en discretizar el macizo rocoso que rodea una excavación en pequeños elementos (triángulos o rectángulos en el caso de análisis bidimensionales) conectados a través de nodos (vértices de los elementos). En el proceso se calculan los desplazamientos en los nodos y luego se calculan las tensiones en el interior de los elementos. Es por tanto una aproximación de los valores de una función a partir del conocimiento de un número determinado y finito de puntos.

Sin embargo, es un método que no proporciona la solución "exacta" a un problema dado, sino que, posibilita obtener una solución aproximada y se debe complementar el análisis con el resto de técnicas de diseño de obras subterráneas.

El modelamiento se inicia ingresando las coordenadas pertenecientes a la excavación en la línea rápida, en la parte inferior derecha de la pantalla, formando la sección. Luego se crea la frontera exterior para definir límites del modelamiento. También se puede dibujar en AutoCAD y luego importar el archivo en DXF, como se muestra en la ilustración 6.

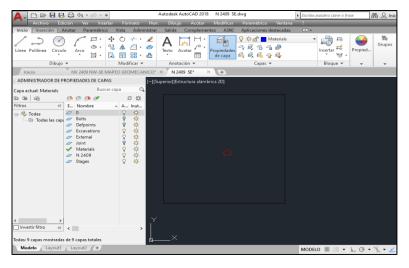


Ilustración 117: Archivo DXF

1. Se importa el Archivo DXF como se muestra en la Ilustración N°7

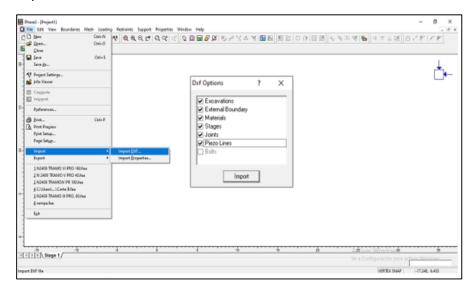


Ilustración 118: Importar archivo DXF

2. Mediante el icono "Boundaire" se dibujan los distintos materiales, seleccionando el icono "Add Material".

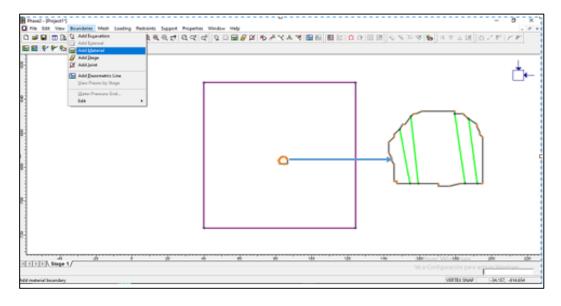


Ilustración 119: Introducir Materiales

3. En el icono "**Project Seting**" se determina la cantidad de stages que se van a necesitar.

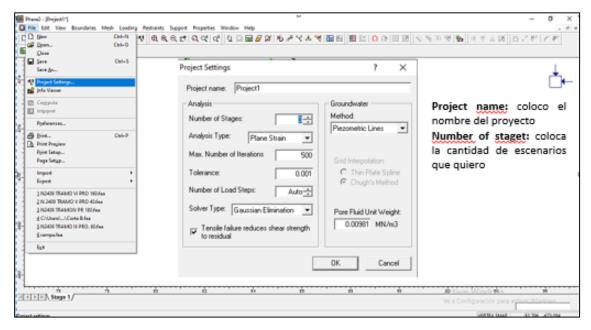


Ilustración 120: Escenarios

4. Se discretiza el Macizo rocoso que rodea a la excavación, mediante el icono "**Dizcretize"** y el icono "**Mesh"** con el cual se construye la red de elementos unidos por nodos.

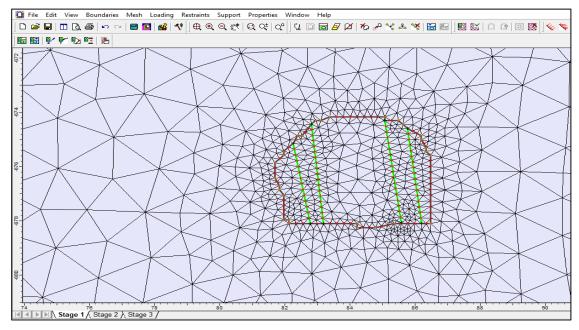


Ilustración 121: Discretize

5. Se selecciona el icono" Loading", luego "Field stress properties" para introducir los valores de tensión en $\sigma_1 \sigma_2 y \sigma_z$.

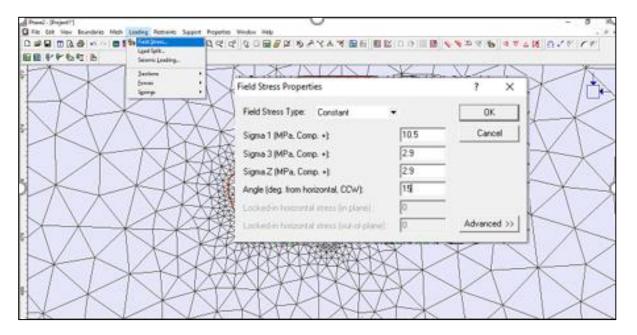


Ilustración 122: Tensiones

6. En el icono "**Properties**" y luego "**Define Materials**" se introducen las características de los materiales que se definieron antes como módulo de deformación y parámetros del criterio elegido, como el de Hoek – Brown.

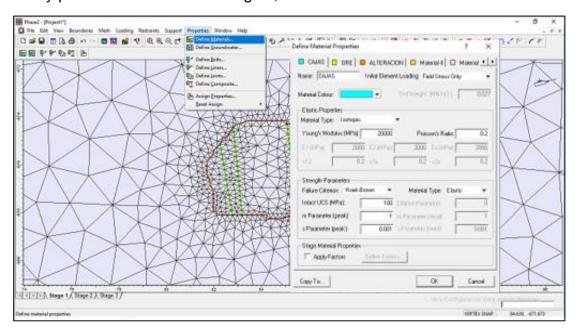


Ilustración 123: Propiedades de los materiales

7. Se define el sostenimiento a utilizar: Bulones y Shotcrete sus características en función de los elementos que se tengan disponibles en la empresa.

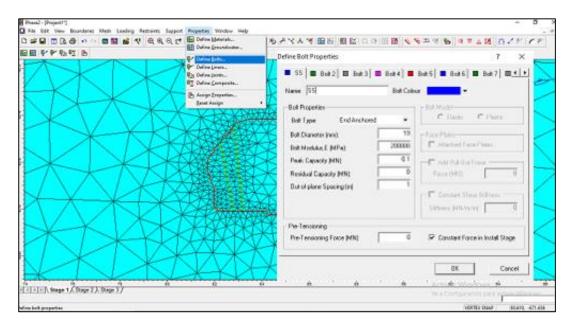


Ilustración 124: sostenimiento

8. Se selecciona el icono "Assing Properties" para asignar las propiedades a cada elemento.

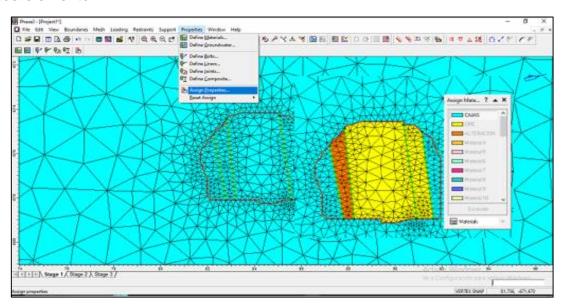


Ilustración 125: Asignar propiedades

9. Se realiza la excavación en el "Stage 2"

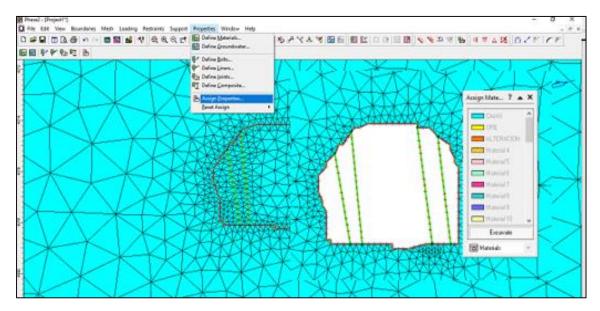


Ilustración 126: Excavación

10. En el "Stage 3" se coloca el sostenimiento, seleccionando "Support" y luego "Add Spot Bolt".

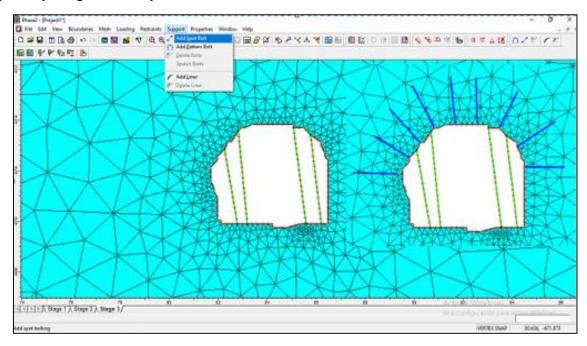


Ilustración 127: Sostenimiento

11. En el icono "Compute" se computa todo y se espera la carga de datos.

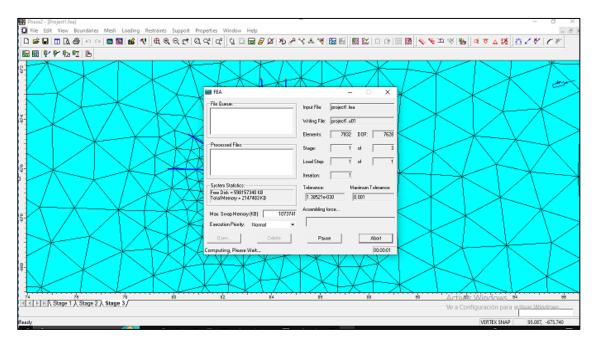


Ilustración 128: Computar

12. Seleccionando el icono "**Interpret**" el software muestra la simulación. La imagen muestra la distribución de los factores de resistencia del macizo (Strength Factors).

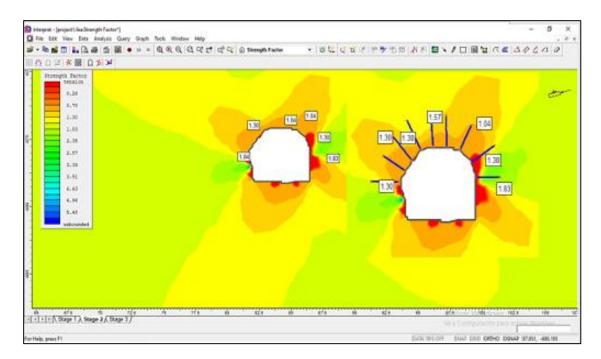


Ilustración 129: Interpretar

ANEXO III: PLANILLAS MAPEO GEOMECANICO N2433

Tramo	Progresiva	T/H/F	Lito1		ncia de la oca		RQD	Espaciado	C	Condición de	las Discon	tinuidades	5	Flujo de Agua	Corrección		RMR
				UCS2	Valor	%	Valor	Valor	Long3	Abert4.	Rug5.	Rell6.	Alt7	Valor	Valor	RMR	RMR Ajus- tado
1	ACC	_HD	MOZ	235	14,5	70	14	10	4	5	6	4	6	10	-10	73,5	63,5
1	ACC	_HI	MOZ	198	14	69	14	8	3	4	6	4	6	10	-10	69	59
	20 SE	_HI	MOZ	185	13,8	50	10	8	3	4	6	3	4	9	-12	60,8	48,8
	20 JL	_HD	ORE	126	11	30	6,5	8	2	1	6	2	1	10	-12	47,5	35,5
	10 NO	_HD	MOZ	180	13,5	60	12	11	3	2	5	3	4	10	-11	63,5	52,5
2	10110	_HI	ORE	82	8	50	10	12	3	2	5	3	3	10	-11	56	45
2	20 NO	_HI	MOZ	256	15	70	14	9	4	4	5	4	5	12	-12	72	60
	20110	_HD	MOZ	261	15	75	15	9	3	3	5	3	6	10	-11	69	58
	50 NO	_HI	ORE	91	9	40	8	7	2	3	5	1	1	10	-12	46	34
	30 110	_HD	MOZ	156	12	63	12	10	3	3	5	3	5	10	-11	63	52
	70 NO	_HI	MOZ	194	14	50	10	9	4	4	3	2	5	10	-11	61	50
	70 110	_HD	MOZ	204	14	60	12	8	4	4	6	0	5	10	-11	63	52
	90 NO	_HI	MOZ	209	14	50	10	10	3	5	5	4	6	10	-11	67	56
3	30 110	_HD	MOZ	218	14	65	12	8	3	1	6	2	3	10	-11	59	48
3	130 NO	_HI	MOZ	189	14	60	12	10	2	5	5	4	6	10	-11	68	57
	150 110	_HD	ORE	157	12	30	6,5	8	2	1	6	1	2	10	-12	48,5	36,5
	150 NO	_HI	ORE	81	8	40	8	8	3	3	5	1	3	10	-11	49	38
	130 110	_HD	MOZ	150	12	60	12	9	3	4	5	2	4	10	-11	61	50
	20 ACC	_HD	MOZ	237	14,5	67	13	9	3	4	6	3	6	12	-6	70,5	64,5
4	20 ACC	_HI	MOZ	182	13,5	67	13	9	3	4	5	3	6	12	-8	68,5	60,5
	30 ACC	_HD	ORE	118	10	60	12	9	3	3	6	2	2	11	-5	58	53
	30 ACC	_HI	MOZ	189	14	70	14	9	3	3	5	3	5	12	-5	68	63

1 Litología

2 Resistencia a la Compresión Simple

3 Longitud

4 Abertura

5 Rugosidad

6 Relleno

7 Alteración

Tramo	Progresiva	T/H/F	Lito		ncia de la oca		RQD	Espaciado	Co	ndición de la	s Disconti	nuidades		Flujo de Agua	Corrección	I	RMR
Traino	Progresiva	1/11/1	Lito	UCS	Valor	%	Valor	Valor	Long	Abert.	Rug.	Rell.	Alt.	Valor	Valor	RMR	RMR Ajus- tado
	10 SE	_HD	ORE	139	12	40	8	9	3	3	4	3	4	10	-11	56	45
	20 SE	_HI	ORE	119	11	30	6	9	3	3	4	3	4	10	-12	53	41
	30 SE	_HD	MOZ	182	13,5	60	12	9	3	3	5	3	4	10	-11	62,5	51,5
5	60 SE	_HD-HI	MOZ	213	14	70	14	9	3	2	5	3	4	9	-12	63	51
	80 SE	_HI	MOZ	200	14	80	16	9	3	3	5	5	5	10	-11	70	59
	90 SE	_HD	ORE	114	10	30	6	8	3	3	3	1	2	8	-11	44	33
	110 SE	_HI	MOZ	183	13,5	30	6	9	3	2	5	2	4	10	-11	54,5	43,5
	130 SE	HI	MOZ	187	13,5	59	12	9	3	2	4	3	4	10	-12	60,5	48,5
	130 JL	_HD	MOZ	196	14	70	14	9	3	4	5	4	5	10	-11	68	57
6	170 SE	_HI	MOZ	159	12	40	8	8	3	2	5	3	4	10	-12	55	43
	210 SE	_HD	MOZ	222	14	50	10	9	3	4	4	3	4	10	-11	61	50
	210 JL	_HI	MOZ	196	14	60	12	9	3	1	5	4	5	10	-12	63	51
	230 SE	HI	ORE	106	10	40	8	9	2	1	5	2	4	10	-11	51	40
7	230 JL	_HD	MOZ	173	12	80	16	9	3	3	5	4	5	10	-11	67	56
,	270 SE	_HD	MOZ	144	12	70	14	10	3	2	5	3	5	10	-12	64	52
	270 JL	_HI	MOZ	183	13	50	10	9	3	3	4	2	4	10	-11	58	47
		_F	MOZ	140	12	70	14	9	3	3	5	1	4	11	-12	62	50
	30 SE	F	ORE	87	8	40	8	7	3	2	4	3	3	11	-12	49	37
8		_F	ALTERACION	61	7	20	5	8	3	3	4	2	2	11	-12	45	33
8		FRENTE	ORE	143	12	30	7	3	3	2	5	3	3	10	-12	48	36
	70 SE	HD	MOZ	178	13,5	60	12	8	3	2	5	2	5	10	-12	60,5	48,5
		н	MOZ	185	13,5	65	12	3	3	2	4	2	3	10	-12	52,5	40,5
	10 NO	_HD	MOZ	196	14	50	8	8	3	3	5	3	6	10	-12	60	48
9	10 100	_HI	MOZ	222	14	55	8	7	3	3	4	2	3	10	-12	54	42
	30 NO	_F	ORE	140	12	30	7	6	3	2	4	2	2	10	-12	48	36

40 NO FRENTE ORE 113 10 35 7 4 3 2 4 2 4 10 -12 46 34

				RMR	Clas	sificación F	RMR		Clasificación	GSI			Clasificac	ión Q de Bart	on
Tramo	Pr.	T/H/F	RMR	RMR Ajustado	Clasificación	RMR / Tramo	Clasificación	GSI	Índice GSI	GSI / TRAMO	Índice GSI	Q	Clasificación	Q/Tramo	Clasificación
1	ACC	_HD	73,5	63,5	BUENA	61,25	BUENA	58,5	F/R8, MF/B9, FP/MB10	56,25	F/R, MF/B,	8,73	MEDIA	7,01	MEDIA
1	ACC	_HI	69	59	REGULAR	01,23	BUENA	54	F/R, MF/B, FP/MB	30,23	FP/MB	5,29	MEDIA	7,01	IVIEDIA
	20 SE	_HI	60,8	48,8	REGULAR			43,8	F/M, MF/R, FP/B			1,70	MALA		
	20 JL	_HD	47,5	35,5	MALA			30,5	FP/M			0,39	MUY MALA		
	10 NO	_HD	63,5	52,5	REGULAR			47,5	F/M, MF/R, FP/B			2,57	MALA		
2	10 NO	_HI	56	45	REGULAR	48,2	REGULAR	40	MF/M, FP/R, FP/M	43,2	F/M, MF/R,	1,12	MALA	3.40	MALA
2	20 NO	_HI	72	60	REGULAR	46,2	REGULAR	55	F/R, MF/B, FP/MB	43,2	FP/B	5,92	MEDIA	2,40	IVIALA
	20 NO -	_HD	69	58	REGULAR			53	F/R, MF/B, FP/MB			4,74	MEDIA		
	50 NO	_HI	46	34	MALA			29	FP/M			0,33	MUY MALA		
	50 NO	_HD	63	52	REGULAR			47	F/M, MF/R, FP/B			2,43	MALA		
	70 NO	_HI	61	50	REGULAR			45	F/M, MF/R, FP/B			1,95	MALA		
	70 NO	_HD	63	52	REGULAR			47	F/M, MF/R, FP/B			2,43	MALA		
	00 NO	_HI	67	56	REGULAR			51	F/R, MF/B, FP/MB			3,79	MALA		
3	90 NO -	HD_	59	48	REGULAR	48,4	REGULAR	43	F/M, MF/R, FP/B	43,4	F/M, MF/R, FP/B	1,56	MALA	2,11	MALA
		_HI	68	57	REGULAR			52	F/R, MF/B, FP/MB			4,24	MEDIA		
		_HD	48,5	36,5	MALA			31,5	MF/M, FP/R, FP/M			0,43	MUY MALA		
	150 NO	_HI	49	38	MALA			33	MF/M, FP/R, FP/M			0,51	MUY MALA		

⁸ Fracturada/ Regular

⁹ Muy fracturada/Buena

¹⁰ Poco fracturada/Muy buena

		HD	61	50	REGULAR			45	F/M, MF/R, FP/B			1,95	MALA		
		HD	70,5	64,5	BUENA			59,5	F/R, MF/B, FP/MB			9,75	MEDIA		
	20 ACC	HI	68,5	·	BUENA		_	55,5	F/R, MF/B, FP/MB		5 (D. 145 (D.	6,25	MEDIA		
4		HD	58	60,5 53	REGULAR	60	BUENA	48	F/M, MF/R, FP/B	55,3	F/R, MF/B, FP/MB	2,72		6,75	MEDIA
	30 ACC	_						58	F/R, MF/B, FP/MB			-	MALA		
		_HI	68	63 RMR	BUENA	sificación	RMR			- CCI		8,26	MEDIA	sión O de De	***
Tramo	Pr.	T/H/F			Ciu				Clasificació				Clasifica	ción Q de Ba	rton
Trainio	FI.	171171	RMR	RMR Ajustado	Clasificación	RMR / Tramo	Clasificación	GSI	Índice GSI	GSI / TRAMO	Índice GSI	Q	Clasificación	Q/Tramo	Clasificación
	10 SE	_HD	56	45	REGULAR			40	MF/M, FP/R, FP/M			1,12	MALA		
	20 SE	_HI	53	41	REGULAR			36	MF/M, FP/R, FP/M			0,72	MUY MALA		
	30 SE	_HD	62,5	51,5	REGULAR			46,5	F/M, MF/R, FP/B			2,30	MALA		
5	60 SE	_HD-HI	63	51	REGULAR	46,3	REGULAR	46	F/M, MF/R, FP/B	41,3	F/M, MF/R, FP/B	2,18	MALA	1,84	MALA
	80 SE	_HI	70	59	REGULAR			54	F/R, MF/B, FP/MB			5,29	MEDIA		
	90 SE	_HD	44	33	MALA			28	FP/M			0,29	MUY MALA		
	110 SE	_HI	54,5	43,5	REGULAR			38,5	MF/M, FP/R, FP/M			0,95	MUY MALA		
	130 SE	_HI	60,5	48,5	REGULAR			43,5	F/M, MF/R, FP/B			1,65	MALA		
	130 35	_HD	68	57	REGULAR			52	F/R, MF/B, FP/MB			4,24	MEDIA		
6	170 SE	H	55	43	REGULAR	50	REGULAR	38	MF/M, FP/R, FP/M	44,9	F/M, MF/R, FP/B	0,89	MUY MALA	2,18	MALA
	210 SE	_HD	61	50	REGULAR			45	F/M, MF/R, FP/B			1,95	MALA		
	210 3L	_HI	63	51	REGULAR			46	F/M, MF/R, FP/B			2,18	MALA		
	230 SE	_HI	51	40	MALA			35	MF/M, FP/R, FP/M			0,64	MUY MALA		
7	230 3L	_HD	67	56	REGULAR	48,8	REGULAR	51	F/R, MF/B, FP/MB	43,8	F/M,	3,79	MALA	2.07	MALA
,	270 SE	_HD	64	52	REGULAR	40,0	REGULAR	47	F/M, MF/R, FP/B	43,8	MF/R, FP/B	2,43	MALA	2,07	IVIALA
	270 SE	_HI	58	47	REGULAR			42	F/M, MF/R, FP/B			1,40	MALA		
		_F	62	50	REGULAR			45	F/M, MF/R, FP/B			1,95	MALA		
8	30 SE	_F	49	37	MALA	40,0	MALA	32	MF/M, FP/R, FP/M	35,8	MF/M,	0,46	MUY MALA	0,91	MUY MALA
O		_F	45	33	MALA	40,0	WALA	28	FP/M	33,6	FP/R, FP/M	0,29	MUY MALA	0,31	WIGHWALA
	70 SE	FRENTE	48	36	MALA			31	MF/M, FP/R, FP/M			0,41	MUY MALA		

		HD	60,5	48,5	REGULAR			43,5	F/M, MF/R, FP/B			1,65	MALA		
		НІ	52,5	40,5	REGULAR			35,5	MF/M, FP/R, FP/M			0,68	MUY MALA		
	10 NO	_HD	60	48	REGULAR			43	F/M, MF/R, FP/B			1,56	MALA		
	10 100	_HI	54	42	REGULAR	40	24414	37	MF/M, FP/R, FP/M	25	MF/M,	0,80	MUY MALA	0.70	2412/2441
9	30 NO	_F	48	36	MALA	40	MALA	31	MF/M, FP/R, FP/M	35	FP/R, FP/M	0,41	MUY MALA	0,78	MUY MALA
	40 NO	FRENTE	46	34	MALA			29	FP/M			0,33	MUY MALA		

PLANILLAS DE MAPEO GEOMECANICO N 2409

					encia de la Roca		RQD	Esp.		Condición	de las Disco	ontinuidad	es	Flujo de agua	Corrección	RM	ИR
Tramo	Progresiva	T/H/F	Lito	UCS	Valor	%	Valor	Valor	Long	Abert.	Rug.	Rell.	Alt.	Valor	Valor	RMR	RMR Ajustado
	10	_HD	MOZ	235	14	80	16	10	3	4	5	4	5	12	-8	73	65
	10	_HI	MOZ	182	13,5	85	17	10	3	3	5	3	5	12	-8	71,5	63,5
1	1 20	_HD	MOZ	216	14	75	15	10	2	4	3	4	5	12	-8	69	61
_	20	_HI	MOZ	276	15	70	14	10	3	3	5	3	5	12	-8	70	62
	30	_HD	MOZ	222	14	75	15	10	2	4	3	4	5	12	-8	69	61
	30	_HI	MOZ	222	14	70	14	10	3	3	5	3	5	12	-8	69	61
	20	_HD	MOZ	256	15	40	8	3	3	1	5	4	5	11	-8	55	47
2	20	_HI	MOZ	180	13,5	50	10	11	5	3	5	3	5	12	-8	67,5	59,5
2	30	_HD	MOZ	185	13,5	30	6,5	3	1	5	6	3	4	10	-10	52	42
	30	_HI	MOZ	182	13,5	55	11	11	3	2	5	3	4	10	-8	62,5	54,5
	10 NO	_HI	ORE	113	9,5	40	8	3	1	5	6	3	4	11	-10	50,5	40,5
3	40 NO	_HI	MOZ	182	13,5	70	14	10	3	3	5	3	6	10	-11	67,5	56,5
	40 NO	_HD	MOZ	171	13	60	12	10	3	3	5	3	5	10	-12	64	52
	60 NO	_HI	MOZ	111	9,5	60	12	10	3	4	5	3	4	10	-11	60,5	49,5

		_HD	MOZ	159	12	75	15	9	3	3	5	4	6	10	-11	67	56
	90 NO	н	MOZ	207	14	80	16	10	3	3	5	4	5	10	-11	70	59
	80 NO	HD	MOZ	230	14	85	17	9	3	3	5	4	6	10	-12	71	59

					ncia de la loca		RQD	Esp.	С	ondición (de las Disc	ontinuida	ades	Flujo de agua	Corrección	RI	MR
Tramo	Progresiva	T/H/F	Lito	UCS	Valor	%	Valor	Valor	Long	Abert.	Rug.	Rell.	Alt.	Valor	Valor	RMR	RMR Ajustado
	100 NO	HD	MOZ	58	7	45	9	7	3	2	2	2	3	10	-12	45	33
	100 NO	HI	MOZ	237	14	90	18	10	3	3	5	4	6	10	-12	73	61
	130 NO	HD	MOZ	69	7	45	9	9	3	4	4	3	3	10	-12	52	40
4	150 110	НІ	MOZ	156	12	50	10	8	3	3	4	3	4	10	-11	57	46
-	180 NO	HD	MOZ	43	4	70	14	9	3	3	5	4	6	10	-12	58	46
	190 NO	HI	MOZ	139	12	20	5	8	3	2	2	3	3	10	-12	48	36
	210 NO	ні	MOZ	204	14	70	14	11	2	3	5	3	5	10	-11	67	56
	210 NO	HD	ORE	113	9,5	40	8	10	3	2	5	2	2	10	-11	51,5	40,5
	10 SE	_HI	ORE	153	12	30	6,5	3	1	5	6	3	4	11	-10	51,5	41,5
	20 SE	НІ	MOZ	150	12	30	6,5	5	3	3	3	2	4	10	-11	48,5	37,5
	2032	HD	MOZ	40	4	70	14	9	3	3	5	4	6	10	-12	58	46
5	40 SE	НІ	MOZ	82	7	30	6,5	9	3	2	4	3	4	10	-12	48,5	36,5
	40 3L	HD	MOZ	91	7	35	7,5	8	3	3	4	3	4	10	-11	49,5	38,5
	70 SE	НІ	MOZ	91	7	25	6	5	3	3	3	2	4	10	-12	43	31
	70 SE	HD	MOZ	119	9,5	30	6,5	5	3	4	3	3	4	10	-11	48	37
	100 SE	HI	MOZ	185	13	20	5	7	3	2	4	2	4	10	-12	50	38
	100 SE	HD	MOZ	146	12	20	5	9	3	3	5	3	6	10	-12	56	44
6	120 SE	HI	MOZ	66	7	65	13	5	3	4	3	2	4	10	-12	51	39
	12U SE	HD	MOZ	58	7	25	6	5	3	3	3	2	3	10	-12	42	30
	140 SE	HI	MOZ	69	7	30	6,5	5	3	2	5	2	4	10	-12	44,5	32,5

		HD	MOZ	45	4	40	8	9	3	3	5	3	4	10	-12	49	37
	160.65	HD	ORE	95	7	20	5	6	3	3	4	2	4	10	-11	44	33
	160 SE	н	MOZ	142	12	70	14	9	3	4	5	4	6	10	-12	67	55

				RMR	(Clasificació	n RMR		Clasificad	ción GSI			Clasific	ación Q de Ba	arton
Tra- mo	Pr.	T/H/ F	RMR	RMR Ajustado	Clasifica- ción	RMR / Tramo	Clasifica- ción	GSI	Índice GSI	GSI/Tram o	Índice GSI	Q	Clasifica- ción	Q/Tramo	Clasifica- ción
	10	_HD	73	65	BUENA			60	LF/MB11, LF/B12, F/MB, LF/R, F/B, MF/MB			10,31	BUENA		
		豆	71,5	63,5	BUENA			58,5	LF/MB, LF/B, F/MB13, LF/R, F/B, MF/MB			8,73	MEDIA		
1		_HD	69	61	BUENA	62.25	BUENA	56	LF/MB, LF/B, F/MB, LF/R, F/B14, MF/MB	57	F/R, MF7B,	6,61	MEDIA	7 74	MEDIA
1	20	H	70	62	BUENA	62,25	BUENA	57	LF/MB, LF/B, F/MB, LF/R15, F/B, MF/MB16	5/	FP/MB	7,39	MEDIA	7,71	WEDIA
	20	_HD	69	61	BUENA			56	LF/MB, LF/B, F/MB, LF/R, F/B, MF/MB			6,61	MEDIA		
	30	_HI	69	61	BUENA			56	LF/MB, LF/B, F/MB, LF/R, F/B, MF/MB			6,61	MEDIA		
2	20	_HD	55	47	REGULAR	50,75	REGULAR	42	F/M, MF/R, FP/B	46	F/M,	1,40	MALA	2,75	MALA

¹¹ Ligeramente Fracturada/Muy Buena

- 12 Ligeramente Fracturada/ Buena
- 13 Fracturada /Muy Buena
- 14 Fracturada/Buena
- 15 Ligeramente Fracturada /Regular
- 16 Muy Fracturada/ Muy Buena

		_HI	67,5	59,5	REGULAR			54,5	F/R, MF/B, FP/MB		MF/R,FP/B	5,60	MEDIA		
	20	_HD	52	42	REGULAR			37	F/M, MF/R, FP/B			0,80	MUY MALA		
	30	Ξ	62,5	54,5	REGULAR			49,5	F/R, MF/B, FP/MB			3,21	MALA		
	10 NO	HI_	50,5	40,5	REGULAR			35,5	MF/M, FP/R, FP/M			0,68	MUY MALA		
	40	_HI	67,5	56,5	REGULAR			51,5	F/R, MF/B, FP/MB			4,01	MEDIA		
	NO	_HD	64	52	REGULAR			47	F/R, MF/B, FP/MB		F/M,	2,43	MALA		
3	60	H	60,5	49,5	REGULAR	53,21	REGULAR	44,5	F/M, MF/R, FP/B	48,21	MF/R,FP/B	1,84	MALA	3,34	MALA
	NO	_HD	67	56	REGULAR			51	F/R, MF/B, FP/MB			3,79	MALA		
	80	НІ	70	59	REGULAR			54	F/R, MF/B, FP/MB			5,29	MEDIA		
	NO	HD	71	59	REGULAR			54	F/R, MF/B, FP/MB			5,29	MEDIA		

				RMR	(Clasificació	n RMR		Clasifica	ación GSI			Clasific	ación Q de Ba	arton
Tramo	Pr.	T/H/F	RMR	RMR Ajusta- do	Clasificación	RMR / Tramo	Clasificación	GSI	Índice GSI	GSI/Tramo	Índice GSI	Q	Clasificación	Q/Tramo	Clasificación
	100	HD	45	33	MALA			28	MF/M17, FP/R18, FP/M			0,29	MUY MALA		
	NO	HI	73	61	BUENA			56	LF/MB, LF/B, F/MB, LF/R, F/B, MF/MB			6,61	MEDIA		
4	130	HD	52	40	MALA	44,81	REGULAR	35	MF/M, FP/R, FP/M19	40	MF/M,	0,64	MUY MALA	1,87	MALA
	NO H	HI	57	46	REGULAR			41	F/M20, MF/R, FP/B		FP/R,FP/M	1,25	MALA		
		HD	58	46	REGULAR			41	F/M, MF/R, FP/B			1,25	MALA		
	190	HI	48	36	MALA			31	MF/M, FP/R, FP/M			0,41	MUY MALA		

¹⁷ Muy Fracturada / Mala

18 Poco Fracturada/Regular

19 Poco Fracturada/Mala

20 Fracturada /Mala

	NO														
	210	HI	67	56	REGULAR			51	F/R, MF/B, FP/MB			3,79	MALA		
	NO	HD	51,5	40,5	REGULAR			35,5	MF/M, FP/R, FP/M			0,68	MUY MALA		
	10 SE	_HI	51,5	41,5	REGULAR			36,5	F/M, MF/R, FP/B			0,76	MUY MALA		
	20 SE	Н	48,5	37,5	MALA			32,5	MF/M, FP/R, FP/M			0,49	MUY MALA		
	20 JL	HD	58	46	REGULAR			41	F/M, MF/R, FP/B		205/24	1,25	MALA		
5	40 SE	HI	48,5	36,5	MALA	38,29	MALA	31,5	MF/M, FP/R, FP/M	33,29	MF/M, FP/R,FP/M	0,43	MUY MALA	0,59	MUY MALA
	40 3L	HD	49,5	38,5	MALA			33,5	MF/M, FP/R, FP/M		11/10,11/10	0,54	MUY MALA		
	70 SE	HI	43	31	MALA			26	MF/M, FP/R, FP/M			0,24	MUY MALA		
	70 JL	HD	48	37	MALA			32	MF/M, FP/R, FP/M			0,46	MUY MALA		
	100 SE	Н	50	38	MALA			33	MF/M, FP/R, FP/M			0,51	MUY MALA		
	100 31	HD	56	44	REGULAR			39	F/M, MF/R, FP/B			1,00	MUY MALA		
	120 SE	Н	51	39	MALA			34	MF/M, FP/R, FP/M			0,57	MUY MALA		
6	120 JL	HD	42	30	MALA	38,56	MALA	25	FP/M	33,56	MF/M,	0,21	MUY MALA	0,84	MUY MALA
0	140 SE	HI	44,5	32,5	MALA	30,30	IVIALA	27,5	MF/M, FP/R, FP/M	33,30	FP/R,FP/M	0,28	MUY MALA	0,04	IVIOT IVIALA
	140 JL	HD	49	37	MALA			32	MF/M, FP/R, FP/M			0,46	MUY MALA		
	160 SE	HD	44	33	MALA			28	MF/M, FP/R, FP/M			0,29	MUY MALA		
	HOO 3L	HI	67	55	REGULAR			50	F/R, MF/B, FP/MB			3,39	MALA		

PLANILLAS DE MAPEO GEOMECANICO N 2390

					ncia de la loca		RQD	Esp.	Con	dición de la	s Discont	inuidade	es	Flujo de Agua	Corrección	R	MR
TRAMO	Progresiva.	T/H/F	Lito	UCS	Valor	%	Valor	Valor	Long	Abert.	Rug.	Rell.	Alt.	Valor	Valor	RMR	RMR Ajus- tado
	ACC	HD	MOZ	239	12	75	15	9	3	2	5	3	6	10	-5	65	60
1	Acc	HI	MOZ	222	12	70	14	8	3	2	5	3	6	10	-5	63	58
-	BOLSILLO	н	MOZ	256	15	85	17	9	3	4	5	4	6	10	-5	73	68
	DOLSILLO	HD	MOZ	281	15	67	13,5	8	3	2	5	3	5	10	-5	64,5	59,5
	10 NO	HI	MOZ	91	7	30	6,5	8	3	2	5	3	4	10	-11	48,5	37,5
		HD	ORE	178	12	55	11	9	3	2	4	1	4	10	-11	56	45
	30 NO	HI	MOZ	271	15	75	15	11	3	2	5	2	5	10	-12	68	56
	30 110	HD	MOZ	206	12	47	9,5	9	3	2	4	2	3	10	-12	54,5	42,5
2	60 NO	HD	MOZ	114	12	50	10	8	3	3	4	1	2	10	-12	53	41
_		HI	MOZ	185	12	50	10	8	3	3	5	3	4	10	-12	58	46
	100 NO	HI	ORE	226	12	65	12	10	3	2	5	2	6	10	-12	62	50
		HD	MOZ	216	12	60	12	10	3	3	5	2	6	10	-12	63	51
	140 NO	HI	MOZ	96	7	35	7,5	8	3	3	4	2	3	10	-12	47,5	35,5
	110110	HD	MOZ	86	7	40	8	9	3	1	5	3	5	10	-12	51	39
	160 NO	HI	MOZ	133	12	50	10	8	3	4	5	3	3	10	-12	58	46
	100 110	HD	MOZ	165	12	55	11	9	3	2	5	2	4	10	-12	58	46
	190 NO	HI	MOZ	206	12	75	15	8	3	2	5	2	6	10	-12	63	51
3	130 140	HD	MOZ	154	12	40	8	5	3	4	4	2	3	10	-12	51	39
J	220 NO	HI	MOZ	244	12	70	14	8	3	3	5	2	6	10	-12	63	51
	220110	HD	MOZ	142	12	70	14	9	3	1	5	2	5	10	-12	61	49
	270 NO	HI	MOZ	244	12	55	11	8	3	3	5	2	5	10	-12	59	47
	270110	HD	MOZ	216	12	70	14	9	3	3	5	2	6	10	-12	64	52

					encia de Roca		RQD	Esp.	Cond	ición de la	s Discon	tinuida	des	Flujo de Agua	Corrección	R	MR
TRAMO	Progresiva	T/H/F	Lito	UCS	Valor	%	Valor	Valor	Long	Abert.	Rug.	Rell.	Alt.	Valor	Valor	RMR	RMR Ajus- tado
	20 SE	НІ	MOZ	279	15	25	6	6	3	3	5	4	3	10	-11	55	44
	20 JL	HD	MOZ	185	12	67	13,5	10	3	4	5	4	6	10	-11	67,5	56,5
	50 SE	HI	MOZ	136	12	40	8	8	3	2	3	2	3	10	-11	51	40
4	J0 JL	HD	MOZ	149	12	30	6,5	8	3	3	5	3	4	10	-11	54,5	43,5
4	80 SE	HI	MOZ	222	12	35	7,5	10	3	3	5	3	6	10	-12	59,5	47,5
	80 JL	HD	MOZ	160	12	55	11	10	3	4	5	3	6	10	-12	64	52
	110 SE	HD	MOZ	220	12	25	6	7	3	3	4	2	4	10	-11	51	40
	110 JL	HI	MOZ	194	12	70	14	10	3	4	5	4	6	10	-11	68	57
	140 SE	HD	MOZ	115	12	20	5	5	3	3	4	2	4	10	-12	48	36
	140 3L	HI	MOZ	147	12	25	6	7	3	3	4	3	3	10	-12	51	39
	180 SE	HD	MOZ	144	12	20	5	7	3	4	4	2	4	10	-12	51	39
5	180 JL	НІ	MOZ	139	12	30	6,5	7	3	3	4	3	4	10	-12	52,5	40,5
	230 SE	HD	MOZ	176	12	60	12	8	3	3	5	3	5	10	-12	61	49
	230 JL	HI	MOZ	228	12	30	6,5	7	3	2	5	3	5	10	-12	53,5	41,5
	250 SE	HD	ORE	91	7	15	4,5	6	3	3	4	2	3	10	-11	42,5	31,5

				RMR	Cla	sificació	n RMR		Clasifica	ición GSI			Clasificación	Q de Bai	rton
TRAMO	Pr.	T/H/F	RMR	RMR Ajustado	Clasificación	RMR / Tramo	Clasificación	GSI	Índice GSI	GSI/ Tramo	Clasificación	Q	Clasificación	Q/ Tramo	Clasifi- cación
	ACC	HD	65	60	REGULAR			55	F/R, MF/B, FP/MB			5,92	MEDIA		
	ACC	HI	63	58	REGULAR			53	F/R, MF/B, FP/MB		F/R, MF7B,	4,74	MEDIA		
1	BOL	н	73	68	BUENA	61,38	BUENA	63	LF/MB, LF/B, F/MB, LF/R, F/B, MF/MB	56,375	FP/MB	14,39	BUENA	7,66	MEDIA
		HD	64,5	59,5	REGULAR			54,5	F/R, MF/B, FP/MB			5,60	MEDIA		
	10	HI	48,5	37,5	MALA			32,5	MF/M, FP/R, FP/M			0,49	MUY MALA		
	NO	HD	56	45	REGULAR			40	F/M, MF/R, FP/B			1,12	MALA		
	30	HI	68	56	REGULAR			51	F/R, MF/B, FP/MB			3,79	MALA		
	NO	HD	54,5	42,5	REGULAR			37,5	F/M, MF/R, FP/B			0,85	MUY MALA		
2	60	HD	53	41	REGULAR	44.25	REGULAR	36	F/M, MF/R, FP/B	39,35	MF/M,	0,72	MUY MALA	1 22	MALA
2	NO	HI	58	46	REGULAR	44,35	REGULAR	41	F/M, MF/R, FP/B	39,33	FP/R,FP/M	1,25	MALA	1,33	IVIALA
	100	HI	62	50	REGULAR			45	F/M, MF/R, FP/B			1,95	MALA		
	NO	HD	63	51	REGULAR			46	F/R, MF/B, FP/MB			2,18	MALA		
	140	HI	47,5	35,5	MALA			30,5	MF/M, FP/R, FP/M			0,39	MUY MALA		
	NO	HD	51	39	MALA			34	MF/M, FP/R, FP/M			0,57	MUY MALA		
	160	HI	58	46	REGULAR			41	F/M, MF/R, FP/B			1,25	MALA		
	NO	HD	58	46	REGULAR			41	F/M, MF/R, FP/B			1,25	MALA		
	190	H	63	51	REGULAR			46	F/R, MF/B, FP/MB			2,18	MALA		
3	NO	HD	51	39	MALA	47,63	REGULAR	34	MF/M, FP/R, FP/M	42,63	F/M,	0,57	MUY MALA	1,62	MALA
3	220	HI	63	51	REGULAR	47,03	REGULAR	46	F/R, MF/B, FP/MB	42,03	MF/R,FP/B	2,18	MALA	1,02	WIALA
	NO	HD	61	49	REGULAR			44	F/M, MF/R, FP/B			1,74	MALA		
	270	HI	59	47	REGULAR			42	F/M, MF/R, FP/B			1,40	MALA		
	NO	HD	64	52	REGULAR			47	F/R, MF/B, FP/MB			2,43	MALA		

				RMR	С	lasificació	n RMR		Clasifi	cación GSI			Clasifica	ción Q de	Barton
TRAMO	Pr.	T/H/F	RMR	RMR Ajustado	Clasificación	RMR / Tramo	Clasificación	GSI	Índice GSI	GSI/ Tra- mo	Clasificación	Q	Clasificación	Q/ Tramo	Clasificación
	20 SE	Н	55	44	REGULAR			39	F/M, MF/R, FP/B			1,00	MUY MALA		
	20 3L	HD	67,5	56,5	REGULAR			51,5	F/R, MF/B, FP/MB			4,01	MEDIA		
	50 SE	н	51	40	MALA			35	MF/M, FP/R, FP/M			0,64	MUY MALA		
4		HD	54,5	43,5	REGULAR	47,56	REGULAR	38,5	F/M, MF/R, FP/B	42 EG	F/M,	0,95	MUY MALA	1.02	MALA
4	80 SE	Н	59,5	47,5	REGULAR	47,56	REGULAR	42,5	F/M, MF/R, FP/B	42,56	MF/R,FP/B	1,48	MALA	1,92	IVIALA
	80 3L	HD	64	52	REGULAR			47	F/R, MF/B, FP/MB			2,43	MALA		
	110 SE	HD	51	40	MALA			35	MF/M, FP/R, FP/M			0,64	MUY MALA		
		HI	68	57	REGULAR			52	F/R, MF/B, FP/MB			4,24	MEDIA		
	140 SE	HD	48	36	MALA			31	MF/M, FP/R, FP/M			0,41	MUY MALA		
	140 SE	НІ	51	39	MALA			34	MF/M, FP/R, FP/M			0,57	MUY MALA		
	180 SE	HD	51	39	MALA			34	MF/M, FP/R, FP/M		MF/M,	0,57	MUY MALA		
5	180 SL	н	52,5	40,5	REGULAR	39,50	MALA	35,5	MF/M, FP/R, FP/M	34,50	FP/R,FP/M	0,68	MUY MALA	0,71	MUY MALA
	230 SE	HD	61	49	REGULAR			44	F/M, MF/R, FP/B			1,74	MALA		
	230 SE	Н	53,5	41,5	REGULAR			36,5	F/M, MF/R, FP/B			0,76	MUY MALA		
	250 SE	HD	42,5	31,5	MALA			26,5	MF/M, FP/R, FP/M			0,25	MUY MALA		

PLANILLAS MARTILLO DE SCHMIT

												DAT	OS MAF	RTILLO DE S	CHMIT N 242	9 Y N 2433				
Tramo	Pr.	HD/HI/F				Impa	ictos	en la	Roca	l			Suma	Pr21 Rebote	Orientación	Densidad(t/m³)	Densidad(KN/m³)	Factor 1	Factor 2	Rc22 (Mpa)
1	PR 20	_HD	54	49	52	59	57	62	61	69	73	64	329	65,8	90°	2,4	23,5	0,000880	1,010000	235
	PR 20	_HI	42	30	34	36	41	78	64	59	56	54	311	62,2	90°	2,4	23,5	0,000880	1,010000	198
	PR 20	_HI	42	10	34	36	41	70	68	60	49	57	304	60,8	90°	2,4	23,5	0,000880	1,010000	185
	FR 20	_HD	18	15	23	25	30	46	49	55	51	63	264	52,8	90°	2,4	23,5	0,000880	1,010000	126
	PR 10	_HD	12	30	34	40	41	70	68	60	46	57	301	60,2	90°	2,4	23,5	0,000880	1,010000	180
2	FK 10	_HI	9	14	16	19	27	30	40	42	51	56	219	43,8	90°	2,4	23,5	0,000880	1,010000	82
2	PR 20	_HI	53	43	45	55	48	63	60	78	71	66	338	67,6	90°	2,4	23,5	0,000880	1,010000	256
	FR 20	_HD	54	49	52	59	57	62	61	69	73	75	340	68	90°	2,4	23,5	0,000880	1,010000	261
	PR 50	_HI	16	20	26	24	29	41	42	44	46	57	230	46	90°	2,4	23,5	0,000880	1,010000	91
	PK 30	_HD	19	34	31	38	41	54	47	67	68	50	286	57,2	90°	2,4	23,5	0,000880	1,010000	156
	PR70	_HI	34	18	12	29	11	48	73	65	56	67	309	61,8	90°	2,4	23,5	0,000880	1,010000	194
	PR/U	_HD	52	49	53	54	59	61	63	64	66	60	314	62,8	90°	2,4	23,5	0,000880	1,010000	204
	PR90	_HI	49	49	52	50	39	68	54	73	59	63	317	63,4	90°	2,4	23,5	0,000880	1,010000	209
3	PN90	_HD	35	42	41	40	33	60	65	75	55	66	321	64,2	90°	2,4	23,5	0,000880	1,010000	218
3	PR 130	H	39	49	52	41	28	62	57	54	60	73	306	61,2	90°	2,4	23,5	0,000880	1,010000	189
	PK 150	_HD	40	42	45	45	37	53	59	62	63	50	287	57,4	90°	2,4	23,5	0,000880	1,010000	157
	DD 450	_HI	12	13	15	17	16	39	40	58	36	44	217	43,4	90°	2,4	23,5	0,000880	1,010000	81
	PR 150	_HD	41	37	39	39	34	43	60	67	57	55	282	56,4	90°	2,4	23,5	0,000880	1,010000	150
	PR 20	_HD	40	47	45	53	55	63	60	71	66	70	330	66	90°	2,4	23,5	0,000880	1,010000	237
4	PK 20	_HI	24	26	28	37	40	50	57	60	69	66	302	60,4	90°	2,4	23,5	0,000880	1,010000	182
	PR 30	_HD	19	34	31	38	41	44	48	63	55	47	257	51,4	90°	2,4	23,5	0,000880	1,010000	118

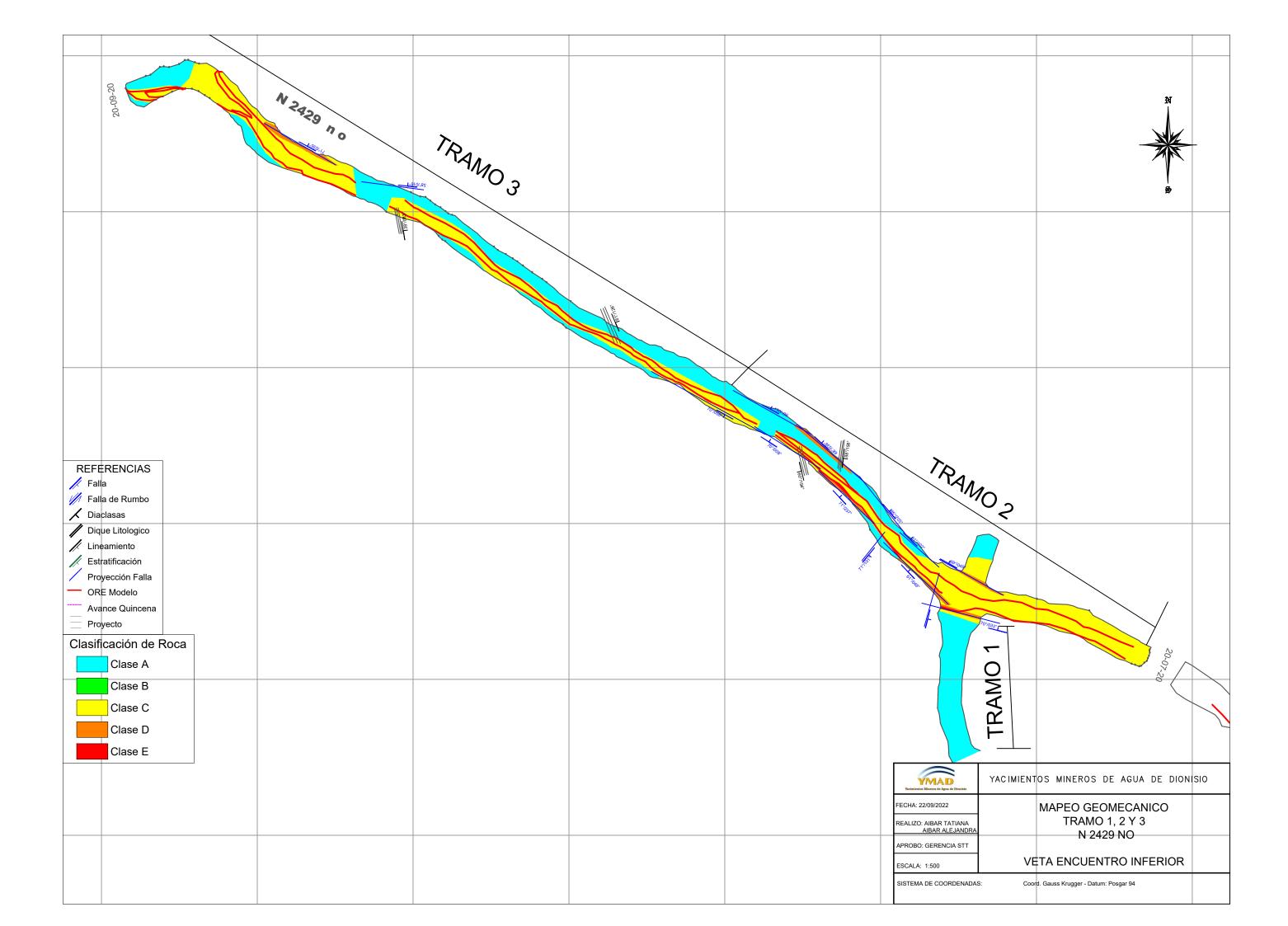
21 Promedio de Rebotes

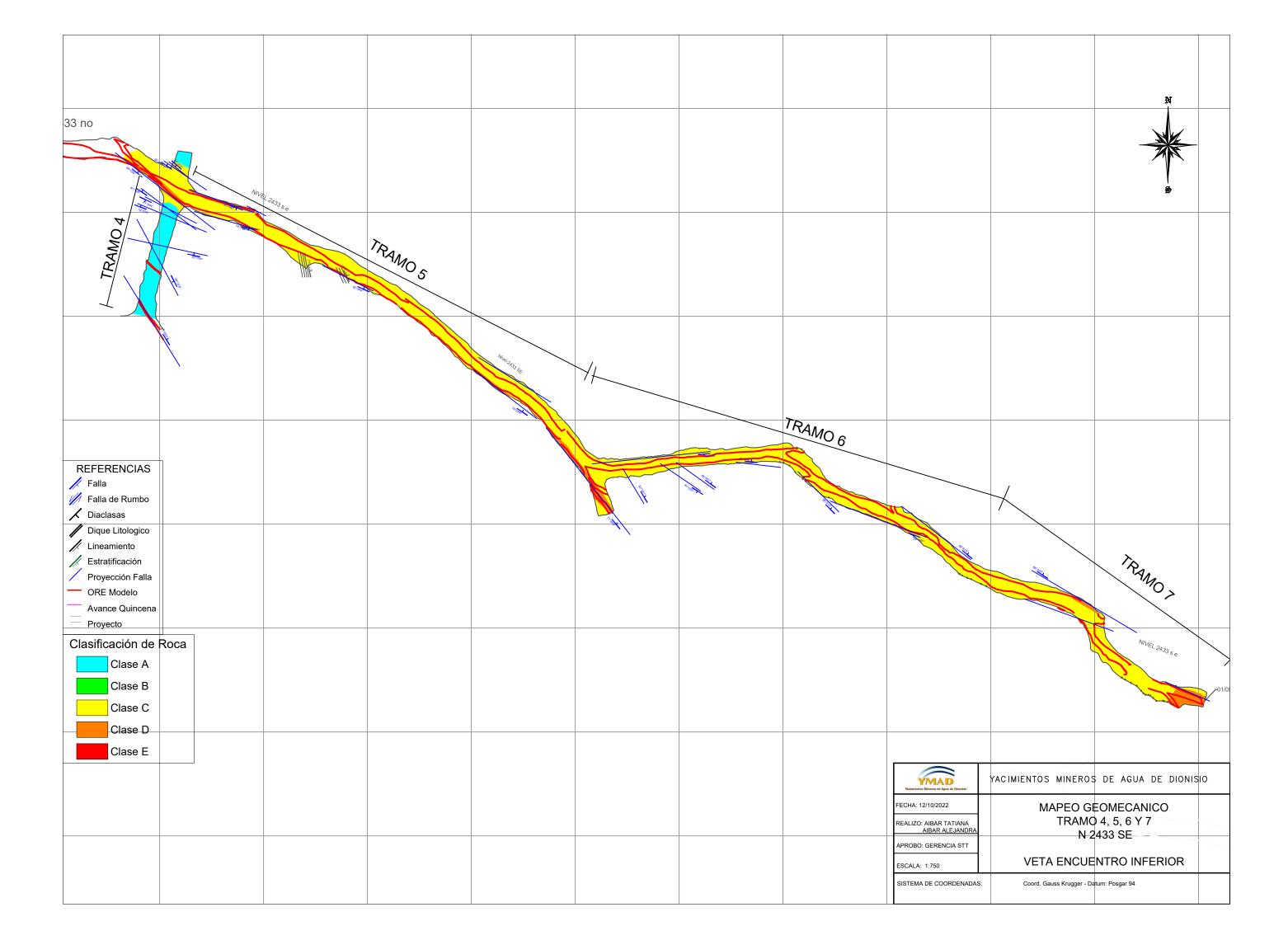
22 Resistencia

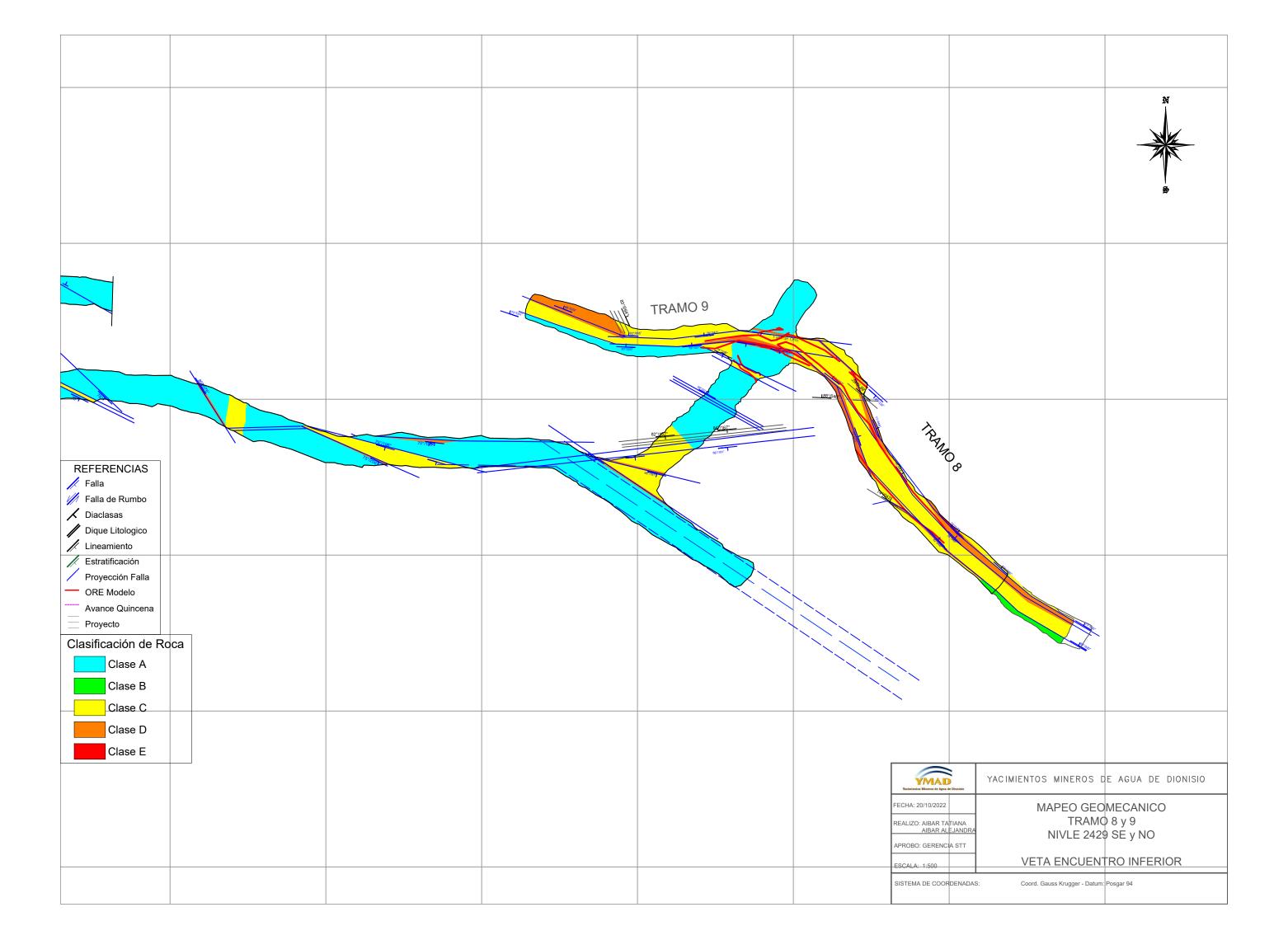
											DA	ATOS	MART	LLO DE SO	CHMIT N 242	9 Y N 2433				
Tramo	Pr.	HD/HI/F				Impa	ctos	en la	Roca				Suma	Pr. Rebote	Orienta- ción	Densi- dad(t/m³)	Densi- dad(KN/m³)	Factor 1	Factor 2	Rc (Mpa)
	PR 10	_HD	42	48	48	50	52	52	52	57	55	58	274	54,8	90°	2,4	23,5	0,000880	1,010000	139
	PR 20	_HI	18	15	23	25	30	46	49	49	51	63	258	51,6	90°	2,4	23,5	0,000880	1,010000	119
	PR 30	_HD	34	12	18	11	29	48	57	64	56	77	302	60,4	90°	2,4	23,5	0,000880	1,010000	182
5	PR 60	_HD-HI	24	38	39	45	45	59	63	71	61	65	319	63,8	90°	2,4	23,5	0,000880	1,010000	213
	PR 80	_HI	41	37	39	39	34	53	60	67	57	75	312	62,4	90°	2,4	23,5	0,000880	1,010000	200
	PR 90	_HD	6	7	8	7	12	43	37	65	50	58	253	50,6	90°	2,4	23,5	0,000880	1,010000	114
	PR 110	_HI	9	14	16	19	27	50	66	52	71	64	303	60,6	90°	2,4	23,5	0,000880	1,010000	183
	PR 130	_HI	8	8	12	33	35	71	54	54	60	66	305	61	90°	2,4	23,5	0,000880	1,010000	187
	PK 150	_HD	16	20	26	24	29	61	42	54	76	77	310	62	90°	2,4	23,5	0,000880	1,010000	196
6	PR 170	_HI	18	15	23	25	30	56	49	69	51	63	288	57,6	90°	2,4	23,5	0,000880	1,010000	159
	PR 210	_HD	24	26	28	37	40	60	57	69	71	66	323	64,6	90°	2,4	23,5	0,000880	1,010000	222
	PK 210	_HI	20	22	27	39	45	78	54	55	56	67	310	62	90°	2,4	23,5	0,000880	1,010000	196
	PR 230	_HI	14	20	25	27	29	62	56	39	43	45	245	49	90°	2,4	23,5	0,000880	1,010000	106
7	FR 230	_HD	5	9	11	12	13	76	52	63	48	58	297	59,4	90°	2,4	23,5	0,000880	1,010000	173
,	PR 270	_HD	11	16	19	23	30	56	58	40	55	69	278	55,6	90°	2,4	23,5	0,000880	1,010000	144
	PR 270	_HI	11	16	19	20	21	70	58	63	44	68	303	60,6	90°	2,4	23,5	0,000880	1,010000	183
		_F	20	27	42	19	13	62	41	50	55	67	275	55	90°	2,4	23,5	0,000880	1,010000	140
	30 SE	_F	7	5	10	17	4	25	75	32	38	55	225	45	90°	2,4	23,5	0,000880	1,010000	87
		_F	12	13	11	7	6	31	59	48	28	21	187	37,4	90°	2,4	23,5	0,000880	1,010000	61
8		_F	45	50	38	51	43	45	51	63	55	63	277	55,4	90°	2,4	23,5	0,000880	1,010000	143
	70 SE	HD	23	25	9	25	20	53	63	52	75	57	300	60	90°	2,4	23,5	0,000880	1,010000	178
		HI	21	19	27	13	5	51	69	62	66	56	304	60,8	90°	2,4	23,5	0,000880	1,010000	185
	10 NO	_HD	48	42	50	48	52	67	52	58	64	69	310	62	90°	2,4	23,5	0,000880	1,010000	196
9	10 100	_HI	35	48	43	51	41	65	51	60	74	73	323	64,6	90°	2,4	23,5	0,000880	1,010000	222
	30 NO	_F	64	15	26	14	20	40	59	57	55	64	275	55	90°	2,4	23,5	0,000880	1,010000	140

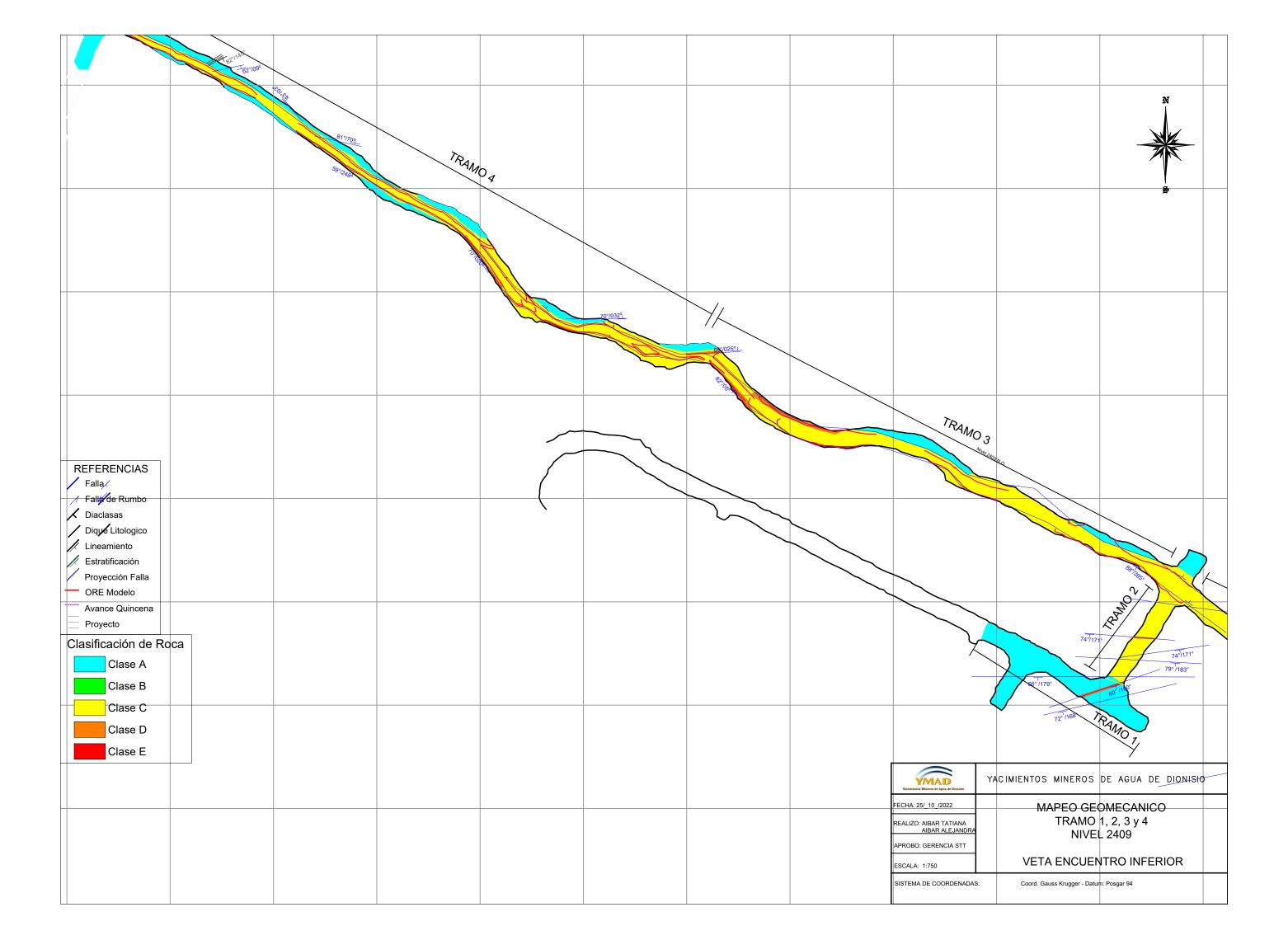
40 NO _F 34 12 18 11 29 38 57 54 56 47 252 50,4 90° 2,4 23,5 0,000880 1,010000 **113**

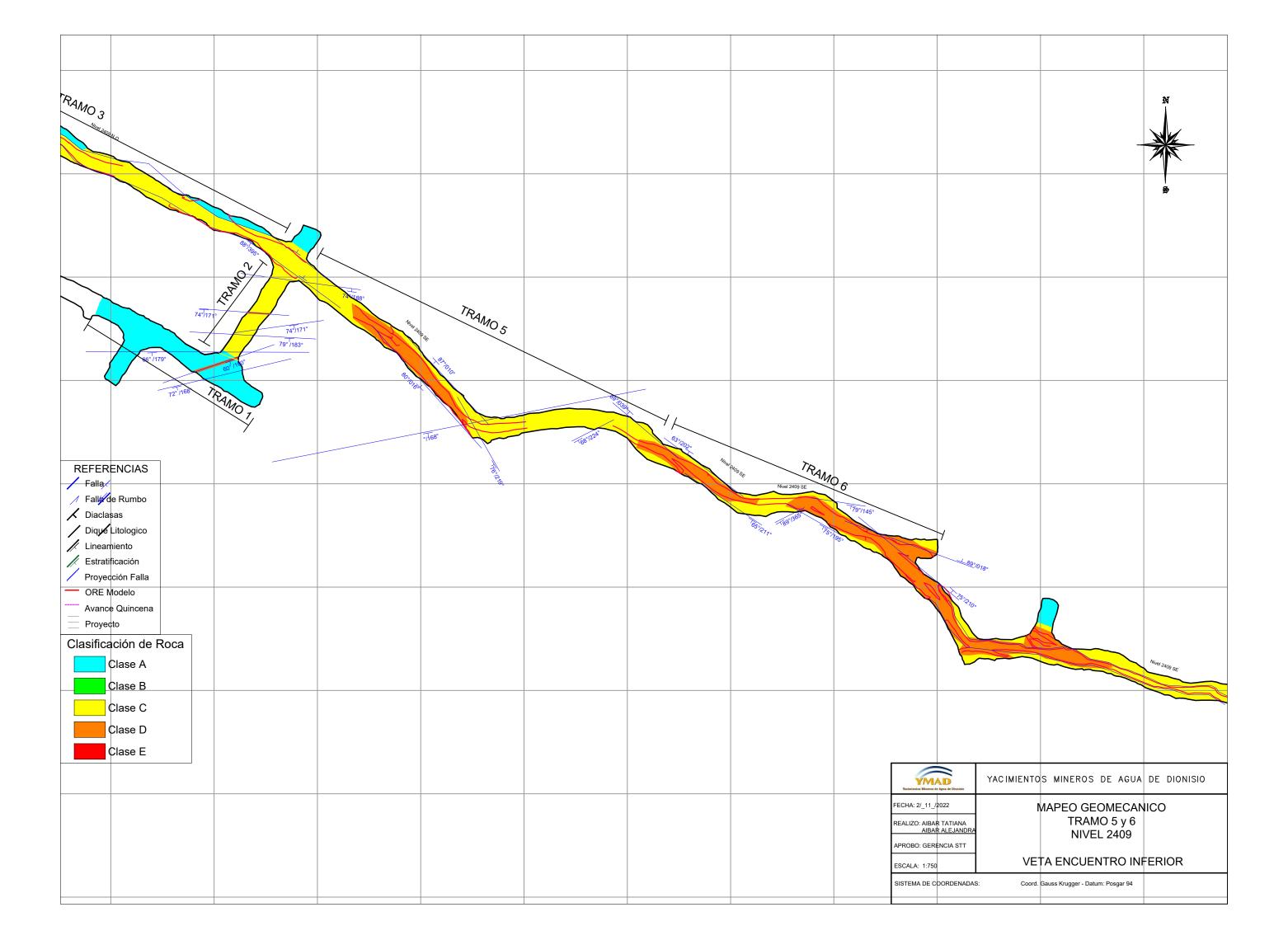
													DATC	S MARTILLO	DE SCHMIT N	2409				
Tramo	Pr	HD/HI/F			ı	mpa	ctos	en la	Roc	а			Suma	Pr.Rebote	Orientación	Densidad(t/m³)	Densidad(KN/m³)	Factor 1	Factor 2	Rc (Mpa)
	PR 10	HD	54	49	52	59	57	62	61	69	73	64	329	65,8	90°	2,4	23,5	0,000880	1,010000	235
		HI	42	30	34	36	41	78	64	59	47	54	302	60,4	90°	2,4	23,5	0,000880	1,010000	182
1	PR 20	HD	54	50	12	46	59	60	59	57	75	69	320	64	90°	2,4	23,5	0,000880	1,010000	216
	FR 20	НІ	57	54	42	20	59	63	70	79	70	64	346	69,2	90°	2,4	23,5	0,000880	1,010000	276
	PR 30	HD	49	34	11	56	57	61	70	64	59	69	323	64,6	90°	2,4	23,5	0,000880	1,010000	222
	11030	НІ	42	40	24	36	45	79	67	54	70	53	323	64,6	90°	2,4	23,5	0,000880	1,010000	222
	PR 20	HD	53	43	45	55	48	63	60	78	71	66	338	67,6	90°	2,4	23,5	0,000880	1,010000	256
2	11,20	НІ	12	30	34	40	41	70	68	60	46	57	301	60,2	90°	2,4	23,5	0,000880	1,010000	180
2	PR 30	HD	42	10	34	36	41	70	68	60	49	57	304	60,8	90°	2,4	23,5	0,000880	1,010000	185
	11130	HI	34	37	16	38	31	75	67	58	49	53	302	60,4	90°	2,4	23,5	0,000880	1,010000	182
	PR10	НІ	34	18	12	29	11	38	57	54	56	47	252	50,4	90°	2,4	23,5	0,000880	1,010000	113
	PR40	HI	50	49	47	61	54	63	60	59	56	64	302	60,4	90°	2,4	23,5	0,000880	1,010000	182
	- 1110	HD	49	49	52	50	39	63	57	54	59	63	296	59,2	90°	2,4	23,5	0,000880	1,010000	171
3	PR60	HI	35	42	41	40	33	60	44	45	55	46	250	50	90°	2,4	23,5	0,000880	1,010000	111
		HD	39	49	52	41	28	62	57	54	60	55	288	57,6	90°	2,4	23,5	0,000880	1,010000	159
	PR 80	НІ	40	42	45	45	37	53	72	68	73	50	316	63,2	90°	2,4	23,5	0,000880	1,010000	207
	. 11 00	HD	45	48	47	53	55	62	60	66	71	68	327	65,4	90°	2,4	23,5	0,000880	1,010000	230

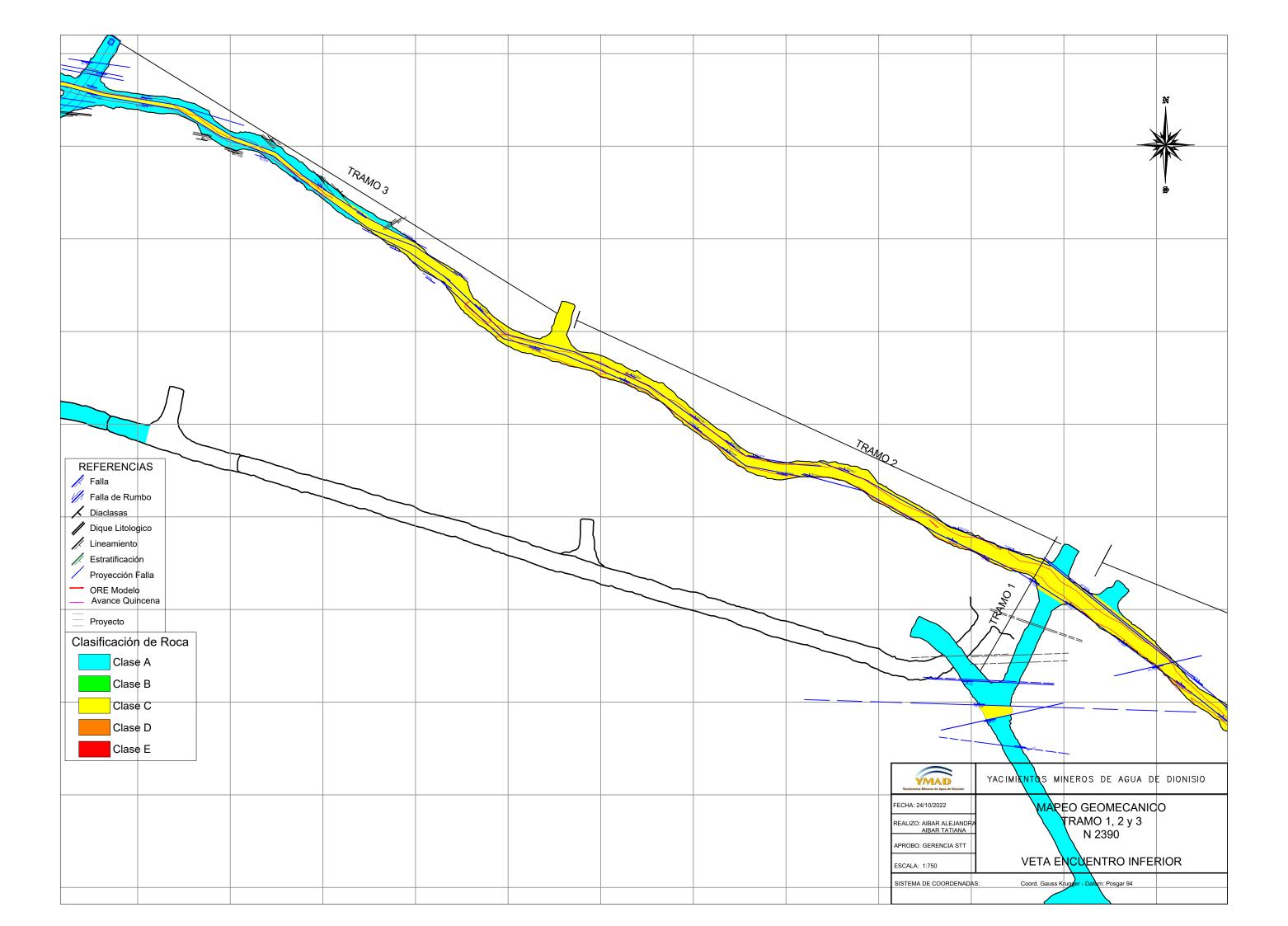

												DA	ГОЅ MAF	RTILLO DE SCH	HMIT N2409					
Tramo	Pr	HD/HI/F			ı	mpa	ctos	en la	Roca	Э			Suma	Pr Rebote	Orientación	Densidad (t/m³)	Densidad (KN/m³)	Factor 1	Factor 2	Rc (Mpa)
	PR100	HD	12	13	15	17	16	39	32	58	30	24	183	36,6	90°	2,4	23,5	0,000880	1,010000	58
	FN100	HI	40	47	45	53	55	63	60	71	66	70	330	66	90°	2,4	23,5	0,000880	1,010000	237
	PR 130	HD	5	8	15	17	21	22	31	52	41	54	200	40	90°	2,4	23,5	0,000880	1,010000	69
4	PK 130	н	19	34	31	38	41	54	47	67	68	50	286	57,2	90°	2,4	23,5	0,000880	1,010000	156
4	PR 180	HD	11	12	12	14	15	16	17	36	34	48	151	30,2	90°	2,4	23,5	0,000880	1,010000	43
	PR 190	HI	42	48	48	50	52	52	52	57	55	58	274	54,8	90°	2,4	23,5	0,000880	1,010000	139
	PR 210	HI	52	49	53	54	59	61	63	64	66	60	314	62,8	90°	2,4	23,5	0,000880	1,010000	204
	PR 210	HD	34	12	18	11	29	38	57	54	56	47	252	50,4	90°	2,4	23,5	0,000880	1,010000	113
	PR 10	HI	24	38	39	45	45	49	63	51	61	60	284	56,8	90°	2,4	23,5	0,000880	1,010000	153
	PR 20	н	41	37	39	39	34	43	60	67	57	55	282	56,4	90°	2,4	23,5	0,000880	1,010000	150
	PR 20	HD	6	7	8	7	12	13	17	25	30	58	143	28,6	90°	2,4	23,5	0,000880	1,010000	40
5	PR 40	HD	9	14	16	19	27	30	40	42	51	56	219	43,8	90°	2,4	23,5	0,000880	1,010000	82
	FR 40	НІ	8	8	12	33	35	41	41	42	40	66	230	46	90°	2,4	23,5	0,000880	1,010000	91
	PR 70	HD	16	20	26	24	29	41	42	44	46	57	230	46	90°	2,4	23,5	0,000880	1,010000	91
	PR 70	н	18	15	23	25	30	46	49	49	51	63	258	51,6	90°	2,4	23,5	0,000880	1,010000	119
	PR 100	HD	24	26	28	37	40	50	57	60	71	66	304	60,8	90°	2,4	23,5	0,000880	1,010000	185
	PK 100	н	20	22	27	39	45	47	54	55	56	67	279	55,8	90°	2,4	23,5	0,000880	1,010000	146
	PR 120	HD	14	20	25	27	29	31	39	39	43	43	195	39	90°	2,4	23,5	0,000880	1,010000	66
6	PK 120	НІ	5	9	11	12	13	26	32	33	42	50	183	36,6	90°	2,4	23,5	0,000880	1,010000	58
6	DD 140	HD	11	16	19	23	30	35	31	40	45	49	200	40	90°	2,4	23,5	0,000880	1,010000	69
	PR 140	НІ	11	16	19	20	21	25	28	33	31	38	155	31	90°	2,4	23,5	0,000880	1,010000	45
	DD4.00	HD	4	15	16	23	29	34	35	47	50	68	234	46,8	90°	2,4	23,5	0,000880	1,010000	95
	PR160	НІ	33	33	41	43	51	51	53	62	52	58	276	55,2	90°	2,4	23,5	0,000880	1,010000	142

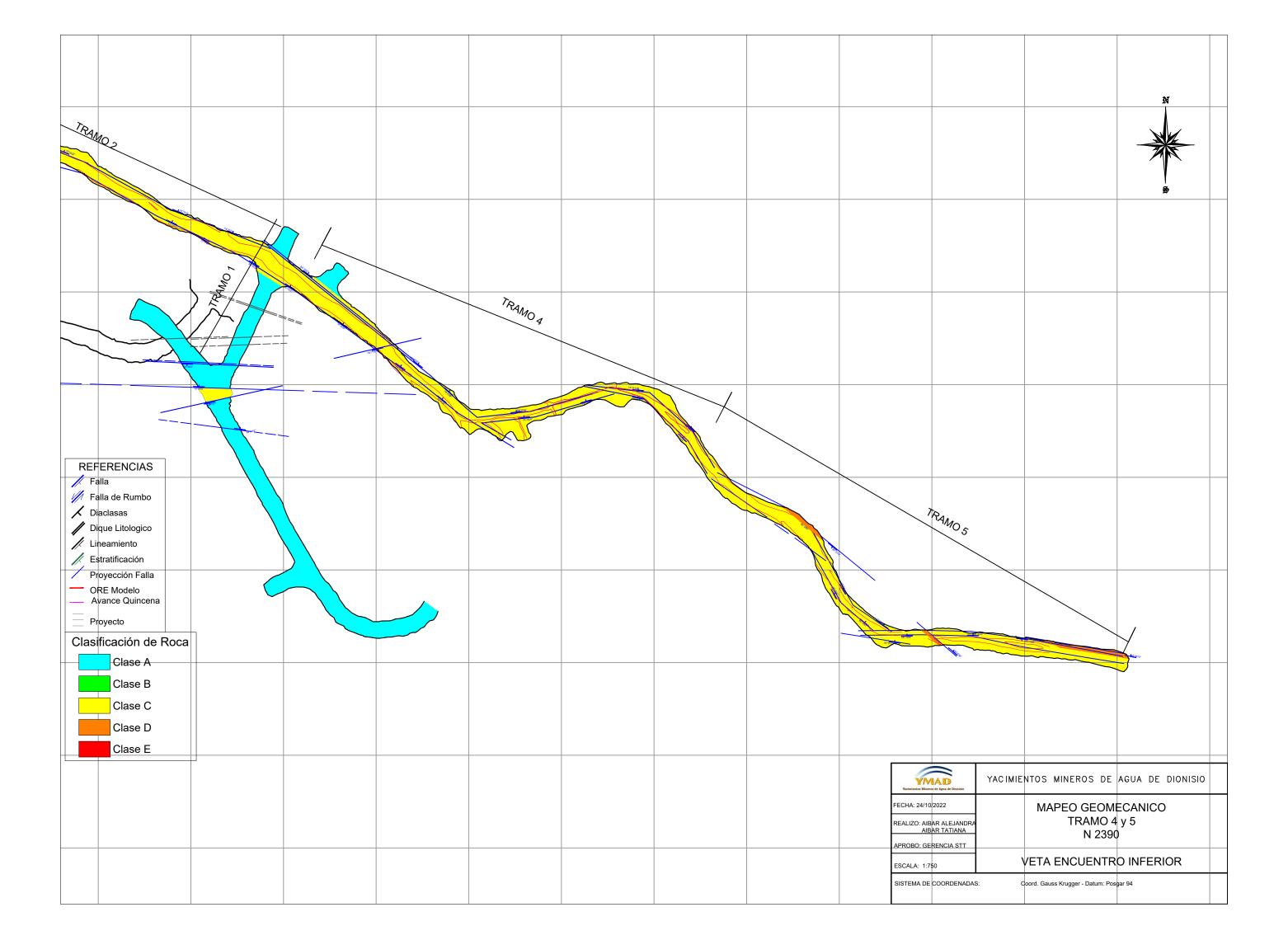


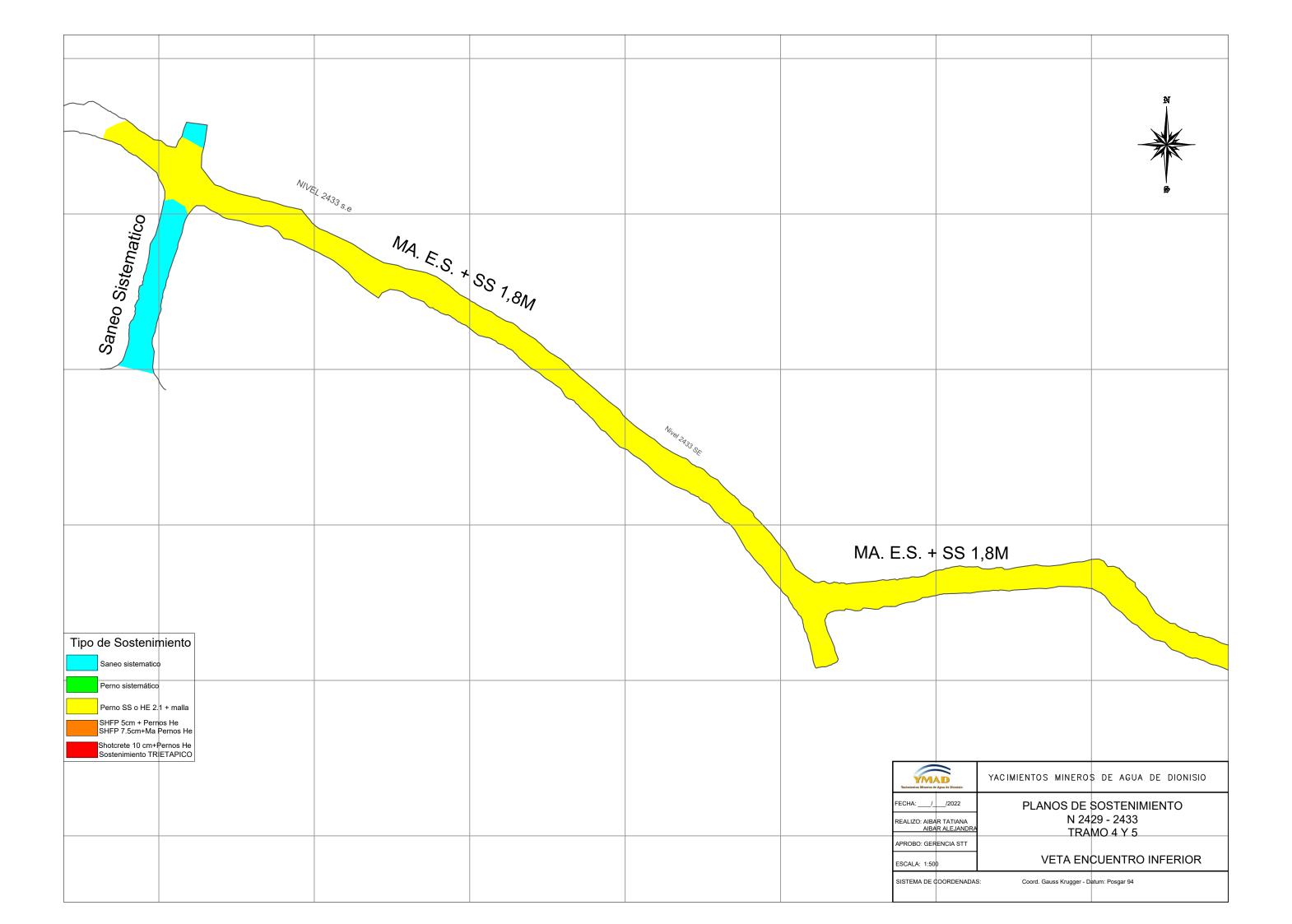

												DAT	OS MAR	TILLO DE SO	CHMIT N 2390					
Tramo	Pr	HD/HI/F			lı	mpac	tos e	en la I	Roca				Suma	Pr. Rebote	Orientación	Densidad (ton/m³)	Densidad (KN/m³)	Factor 1	Factor 2	Rc (Mpa)
		HD	56	57	59	56	59	65	60	61	66	79	331	66,2	90°	2,4	23,5	0,00088	1,01000	239
1		НІ	54	54	50	58	59	60	61	63	69	70	323	64,6	90°	2,4	23,5	0,00088	1,01000	222
1		НІ	39	44	47	53	60	61	65	67	72	73	338	67,6	90°	2,4	23,5	0,00088	1,01000	256
		HD	44	57	61	62	62	64	67	73	70	74	348	69,6	90°	2,4	23,5	0,00088	1,01000	281
	PR 10	НІ	11	14	17	28	29	33	37	50	53	56	229	45,8	90°	2,4	23,5	0,00088	1,01000	91
	FK 10	HD	13	18	25	37	48	55	61	62	62	60	300	60	90°	2,4	23,5	0,00088	1,01000	178
	PR30	НІ	40	21	50	58	61	70	71	64	66	73	344	68,8	90°	2,4	23,5	0,00088	1,01000	271
	FNSO	HD	34	41	47	50	54	58	58	59	69	71	315	63	90°	2,4	23,5	0,00088	1,01000	206
2	PR60	НІ	6	8	112	15	26	41	43	49	52	68	253	50,6	90°	2,4	23,5	0,00088	1,01000	114
2	FROO	HD	10	25	23	35	38	55	58	61	63	67	304	60,8	90°	2,4	23,5	0,00088	1,01000	185
	PR100	HI	36	54	55	55	50	61	61	62	70	71	325	65	90°	2,4	23,5	0,00088	1,01000	226
	11100	HD	39	41	53	54	55	60	60	65	66	69	320	64	90°	2,4	23,5	0,00088	1,01000	216
	PR140	НІ	11	11	23	28	27	32	32	51	56	64	235	47	90°	2,4	23,5	0,00088	1,01000	96
	FR140	HD	5	8	16	20	27	29	37	41	55	62	224	44,8	90°	2,4	23,5	0,00088	1,01000	86
	PR160	HI	10	12	30	33	38	44	45	47	61	72	269	53,8	90°	2,4	23,5	0,00088	1,01000	133
	11100	HD	24	27	31	37	43	49	52	58	61	72	292	58,4	90°	2,4	23,5	0,00088	1,01000	165
	PR190	HI	33	41	47	52	59	61	61	63	60	70	315	63	90°	2,4	23,5	0,00088	1,01000	206
3	FRISO	HD	24	38	39	45	45	49	51	60	62	63	285	57	90°	2,4	23,5	0,00088	1,01000	154
3	PR220	НІ	22	34	32	47	49	55	62	69	73	74	333	66,6	90°	2,4	23,5	0,00088	1,01000	244
	FNZZU	HD	25	33	35	36	43	45	46	56	59	70	276	55,2	90°	2,4	23,5	0,00088	1,01000	142
	PR270	HI	14	20	23	35	38	71	60	70	67	65	333	66,6	90°	2,4	23,5	0,00088	1,01000	244
	111270	HD	31	29	40	48	50	55	62	62	70	71	320	64	90°	2,4	23,5	0,00088	1,01000	216

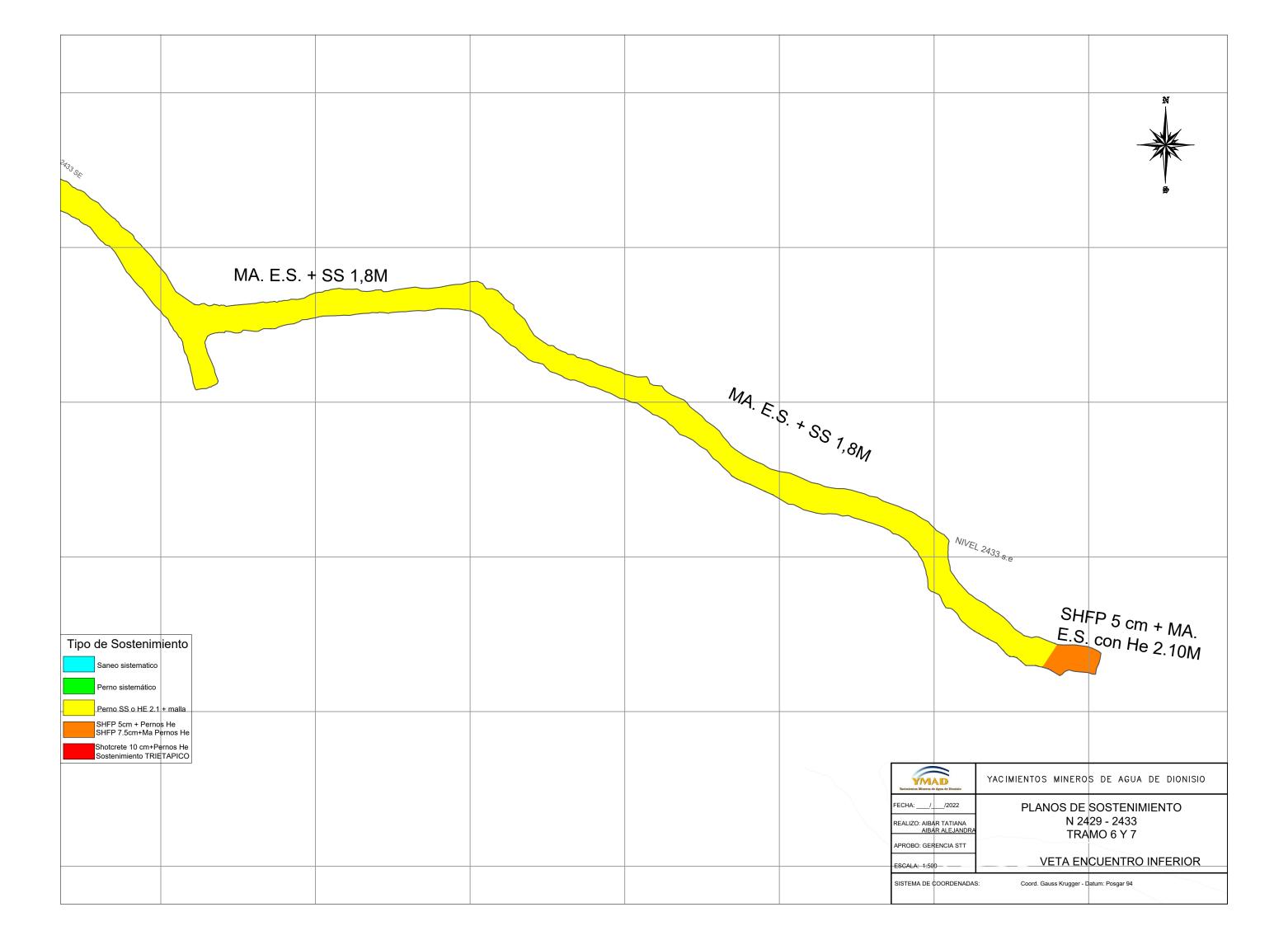


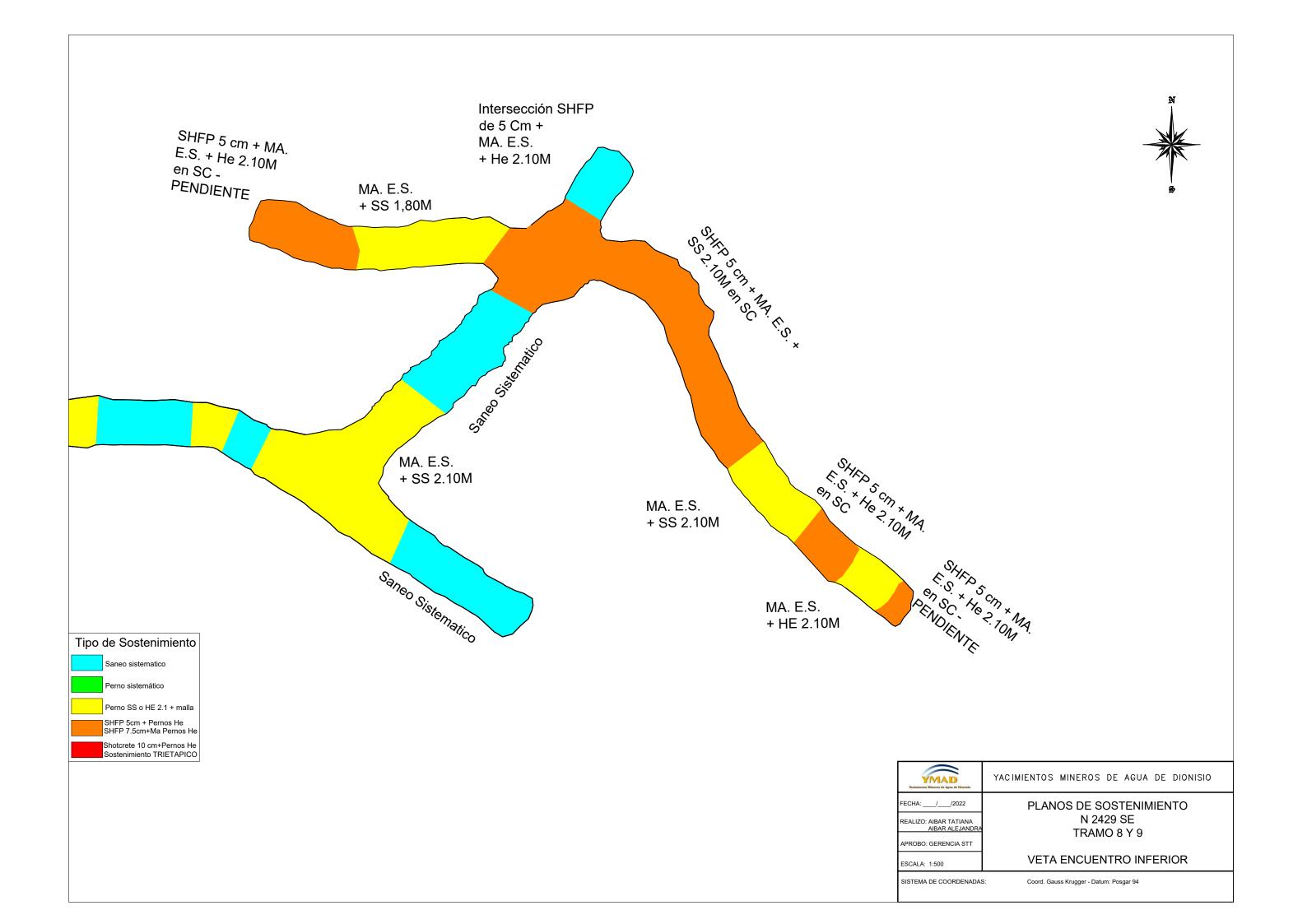

												DAT	TOS MAR	TILLO DE SCI	HMIT N 2390					
Tramo	Pr	HD/HI/F				Impa	ctos	en la	Roca	l			Suma	Pr. Rebo- te	Orientación	Densidad (t/m³)	Densidad (KN/m³)	Factor 1	Factor 2	Rc (Mpa)
	PR 20	HD	49	52	54	53	61	63	62	69	75	78	347	69,4	90°	2,4	23,5	0,00088	1,01000	279
	F IX 20	НІ	30	34	40	41	42	46	57	68	63	70	304	60,8	90°	2,4	23,5	0,00088	1,01000	185
	PR 50	HD	14	15	23	36	42	43	59	62	66	42	272	54,4	90°	2,4	23,5	0,00088	1,01000	136
4	FR 30	н	15	23	34	34	37	63	48	55	65	50	281	56,2	90°	2,4	23,5	0,00088	1,01000	149
4	PR 80	HD	18	53	56	24	40	69	59	59	79	57	323	64,6	90°	2,4	23,5	0,00088	1,01000	222
	FN 80	НІ	21	30	30	32	33	39	39	66	71	74	289	57,8	90°	2,4	23,5	0,00088	1,01000	160
	PR 110	HD	19	40	49	57	56	58	60	64	63	77	322	64,4	90°	2,4	23,5	0,00088	1,01000	220
	PK 110	н	40	35	47	49	56	57	58	60	63	71	309	61,8	90°	2,4	23,5	0,00088	1,01000	194
	PR 140	НІ	11	12	18	29	36	39	47	57	55	56	254	50,8	90°	2,4	23,5	0,00088	1,01000	115
	PK 140	HD	17	21	36	36	48	51	53	56	56	64	280	56	90°	2,4	23,5	0,00088	1,01000	147
	PR 180	н	11	13	19	30	34	36	47	55	64	76	278	55,6	90°	2,4	23,5	0,00088	1,01000	144
5	FN 160	HD	31	36	38	46	47	49	50	54	60	61	274	54,8	90°	2,4	23,5	0,00088	1,01000	139
	PR 230	HD	17	26	33	34	33	43	48	67	67	74	299	59,8	90°	2,4	23,5	0,00088	1,01000	176
	r N 230	н	42	46	53	56	56	57	60	64	70	75	326	65,2	90°	2,4	23,5	0,00088	1,01000	228
	PR 250	F	11	11	12	13	28	40	45	46	49	49	229	45,8	90°	2,4	23,5	0,00088	1,01000	91

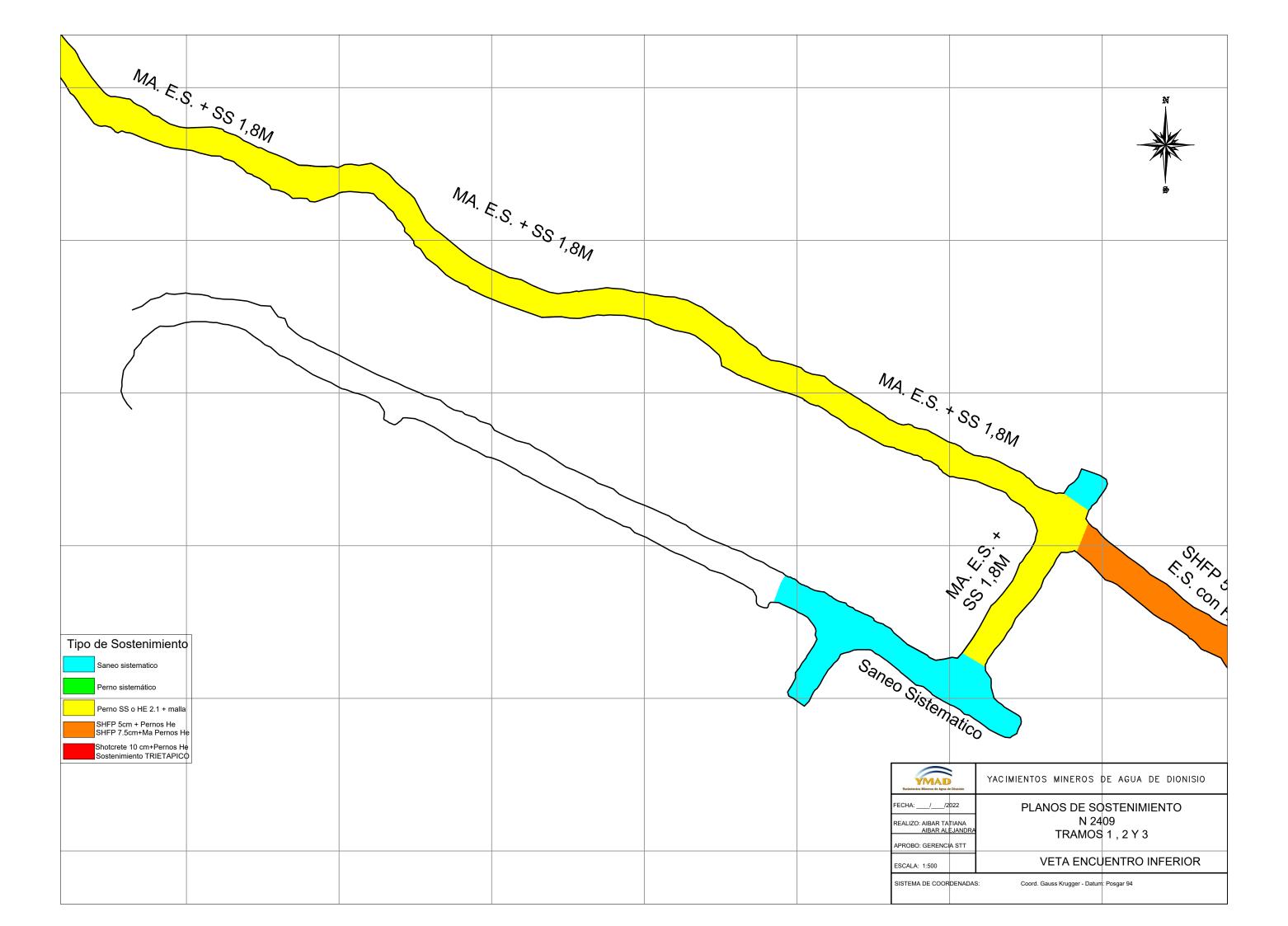


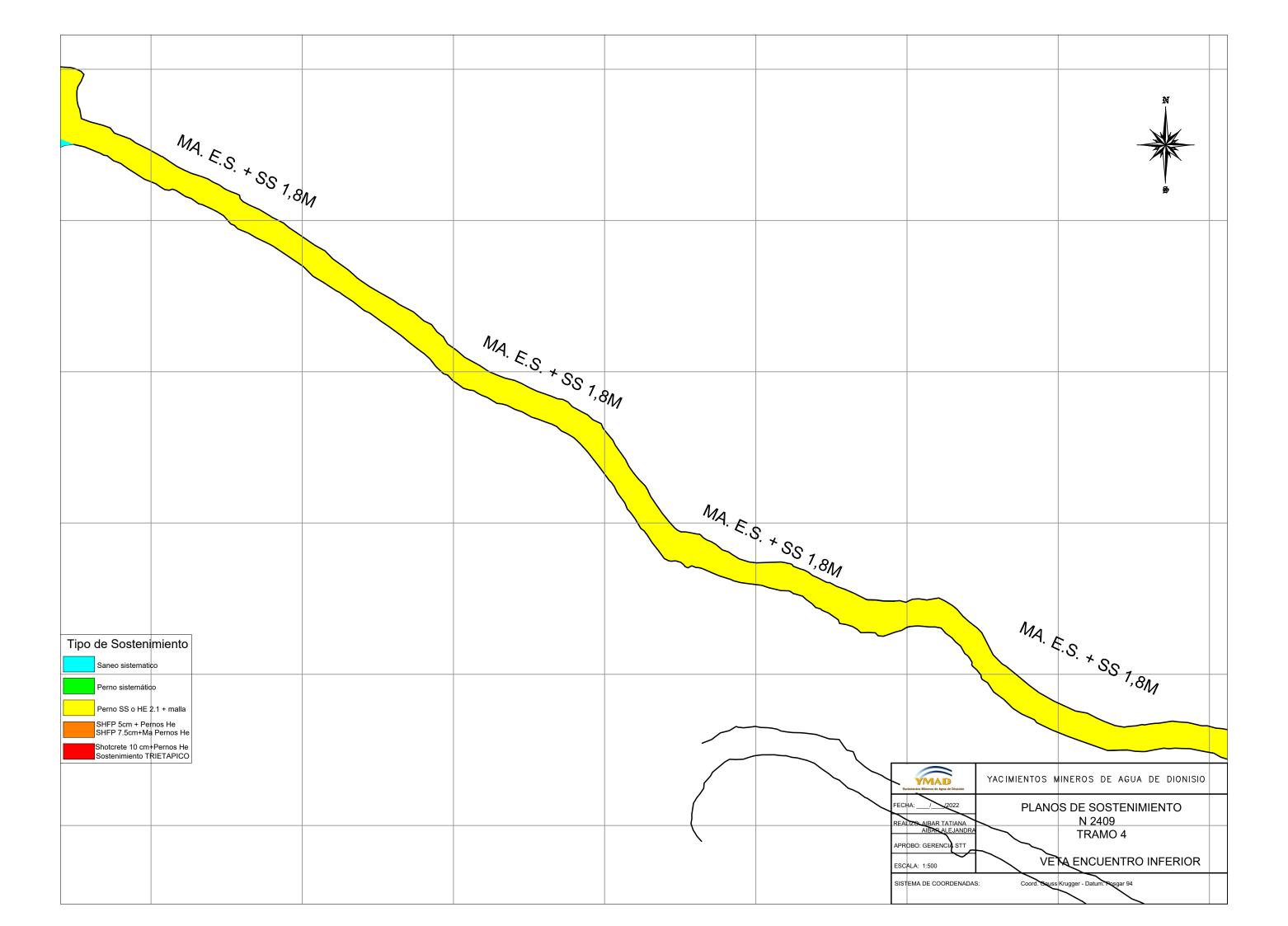











SHEP 5 cm + MA. E.S. con He 2.10M	MA. E.S. *SS 7.8M				¥ \$	
	, on	N ZAZO N	•			
			MA. E.S.	SS 7,8M		
Tipo de Sostenimiento Saneo sistematico				Sistematico	MA. E.S. + SS 1,8M	
Perno SS o HE 2.1 + malla SHFP 5cm + Pernos He SHFP 7.5cm+Ma Pernos He Shotcrete 10 cm+Pernos He Sostenimiento TRIETAPICO				Yosimientoo Mitarroo de Agou de Dionistio FECHA://2022	YACIMIENTOS MINEROS DE AGUA DE DIO PLANOS DE SOSTENIMIENTO N 2429 - 2433	
				REALIZO: AIBAR TATIANA AIBAR ALEJANDRA APROBO: GERENCIA STT ESCALA: 1:500 SISTEMA DE COORDENADAS:	TRAMO 1, 2 Y 3 VETA ENCUENTRO INFERI Coord. Gauss Krugger - Datum: Posgar 94	RIOR

